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Abstract. The Lean proof assistant features a typechecker kernel that
makes use of a set of “definitional equalities” for identifying terms un-
der certain syntactic and typing conditions. While providing for conve-
nient formalization, these equalities complicate meta-theoretical analyses
and the export of proofs from Lean to other proof assistants via logical
frameworks such as Dedukti. In this paper, we describe a translation from
Lean to a smaller theory “Lean™” with fewer such definitional equalities,
specifically eliminating uses of proof irrelevance and “K-like reduction”
in the typing of Lean terms. We adapt a general translation from ex-
tensional to intensional type theory, making Lean’s implicit use of these
definitional equalities explicit through the use of type casts and a corre-
sponding proof irrelevance axiom. The translation has been implemented
in Lean itself in a tool called Lean4Less®, which is able to successfully
translate certain libraries (e.g. the Lean standard library) to Lean™. The
methods developed for this translation may also be transferrable to other
proof assistants based on dependent type theory.
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1 Introduction

Lean [L1] is a proof assistant developed by the Lean FRO with type-theoretic
foundations that are based on the Calculus of Inductive Constructions [13], shar-
ing many similarities with the proof assistant Rocq [[14]. It has become especially
popular with mathematicians in recent years, being well-known for its “Mathlib”
library [[19,18], a large and quickly growing body of mathematics formalized in
Lean. Lean features a small, fast kernel that attempts to be a “minimal” founda-
tion for sound typechecking of Lean proofs. Given Lean’s popularity, it is of high
interest to export Lean proofs to other proof assistants (e.g. Rocq) in order to
both allow for more confidence in their correctness by typechecking them with
a separate kernel, and provide other proof assistant communities with access to
Lean formalizations.

! https://github.com/rish987/LeandLess
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However, this task is complicated by certain meta-theoretical aspects of Lean.
Lean’s kernel, while small, is not entirely minimal, as it enforces a number of
additional definitional equalities, such as those of proof irrelevance and “K-like
reduction” (and more recently, “struct eta” and “struct-like reduction”). Such
equalities are not necessarily present in other proof assistants, so special consid-
eration must be made during translation to ensure compatibility of these features
at the kernel level. One promising approach to this may be to “eliminate” them
entirely, namely by performing a “pre-translation” step on well-typed terms in
the original theory so that they are able to type in a strictly smaller theory
(possibly extended with some axioms). It is this approach of pre-translation to
eliminate definitional equalities (prior to final proof export) that we have imple-
mented with our tool “LeandLess”, which we describe in this paper.

The remainder of the paper is structured as follows: we start by describ-
ing proof irrelevance and K-like reduction, and bring up some meta-theoretical
difficulties arising from their use in Lean’s typing. This motivates the transla-
tion to our target theory of “Lean™ ”, where these definitional equalities have
been eliminated. In , we note that the translation task this entails
can be interpreted as a special case of a translation from “Lean. ”, which is
Lean™ extended with an extensional reflection rule. In , we provide an
overview of how we have implemented our tool as a modification of Lean4Lean
[6], an external typechecker for Lean implemented in Lean, and how we verify our
translation output. In Section 4, we provide more details on the implementation
of the translation. In [S § we describe some translation results on specific
libraries. providing data regarding translation overhead and runtime. Finally, in
, we discuss future directions of our work, relating in particular to the
possible addition of extensional typechecking to Lean and simplifications in the
analyses of certain meta-theoretical properties.

1.1 Proof Irrelevance

Lean’s type theory features a definitional equality known as “proof irrelevance”,
which enables it to ignore the computational content of proofs when typechecking
terms, only concerning itself with the equality of their propositional types. It is
represented by the following rules:

I‘FP:PropE 'h:P T'FRW:P P

I'Fh=h

where we use ' ¢ : T and I' - ¢t = s for Lean’s typing and definitional equality
judgments.

2 The full set of typing rules in Lean was first described by Carneiro [5].

3 Lean features a universe hierarchy of “sorts”, with Sort 0, a.k.a. Prop, being
the bottommost universe of propositional types. Sort typing follows the relation
Sort u : Sort (u + 1).
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Proof irrelevance is useful, for example, in establishing the definitional equal-
ity of subtype instances with definitionally equal values, but differing member-
ship proofs. Subtypes in Lean are defined with the inductive type:

-- subtype inductive type parameterized by type A" and predicate “p°
-= (curly brackets “{...}  denote auto-inferred implicit arguments)
inductive Subtype {A : Sort u} (p : A = Prop) where

-- we construct an instance of ‘Subtype A" with the constructor “mk-,
-— which takes a wvalue “wval’ and proof “prf” that “val  satisfies “p~
| mk : (val : A) -> (prf : p val) : Subtype p

Lean’s equality inductive type Eq has the constructor Eq.refl:

-— (the #check command checks that a term has a spectified inferred type)
#check (Eq.refl : (A : Sort uw) = (a : A) » a = a)

whose output type requires definitional equality of the LHS and RHS. Suppose
that we define the following subtype for natural numbers less than 5, along with
a (pseudo-)constructor:

def NatLT5 : Type := Subtype (fun n => n < 5)
def NatLT5.mk (n : Nat) (p : n < 5) : NatLT5 :=
@Subtype.mk Nat (fun n =>n < 5) np

Now, suppose we have two different proofs pl p2 : 3 < 5. Proof irrelevance

gives us a definitional equality between NatLT5.mk 3 pl and NatLT5.mk 3 p2,
as one would expect, since when we consider the equality of these subtype con-
structions, all that we care about is the equality of their underlying values.
Forms of proof irrelevance are supported in a number of other proof assis-
tants. Until recently, the use of proof irrelevance in Rocq had to be made explicit
with an axiom® However, optional support for definitional proof irrelevance has
recently been added with the SProp type H. Agda supports user-annotated irrel-

evant function arguments and struct fieldst, while F* erases the details of SMT
solver-generated equality proofs [@} The PVS proof assistant! features a special
case of proof irrelevance in identifying predicate subtype constructions.

1.2 K-Like Reduction

Lean also features a related definitional equality rule known as “K-like reduction”
(KLR). It is based on the characterization of so-called “K-like” inductive types
in Lean, which are defined as inductive types that that live in Prop and have

a single constructor without any (non-parametric) arguments. Lean’s equality
inductive type is an example of such a K-like inductive type:

4 https://rocq-prover.org/doc/V9.0.0/stdlib/Stdlib.Logic.
ProofIrrelevance.html

® See https://rocq-prover.org/doc/V9.0.0/refman/addendum/sprop.html.

5 See https://agda.readthedocs.io/en/v2.5.4/language/irrelevance.html.

" https://pvs.csl.sri.com/
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inductive Eq (A : Sort u) (a : A) : A - Prop where
| refl : Eq A a a

This inductive type has two type parameters, found to the left of the colon
in the inductive type signature: the polymorphic type A and the LHS element
a : A. It also has an “index”, which is a special kind of type parameter that
is determined by the constructor: in this case, this is the RHS element, which
must be the same as the LHS element. In the particular case of K-like inductive
types, where constructors have no parameters, the indices can be thought of as
a function of the parameters.

In general, suppose we have a K-like inductive type K with n parameters,
m indices and the unique constructor mk. We can express K-like reduction as:

'Fmkpl ...pn:Kpl ...pnil ... im I'Ft:Kpl ... pnil ... im

[KLR]
't~ mk pl ... pn

For example, the above rule applies to the equality type with n = 2, m = 1,
K = Eq, mk = Eq.refl, pl = Nat, p2 = 0, and il = 0O, allowing any term
t : Eq Nat O O to be reduced to Eq.refl Nat O. Note that KLR is related

to proof irrelevance, since t and mk pl ... pn are already definitionally equal in
Lean by [PI] (as K-like inductive types must live in Prop ). However, it represents
a directed equality (i.e. “rewrite rule”), rather than an undirected one. This is
important in particular for recursor reduction, enabling reduction to proceed in
more situations. For example, the reduction rule for T.rec, the recursor (a.k.a.
elirninator)E of the inductive type T below, gives us the definitional equality:

inductive T : Prop where | mk : T
#check (T.rec : {m : T = Sort u} = m T.mk = (t : T) » m t)
example : T.rec true T.mk = true := rfl

Normally, such reductions are limited to explicit well-typed constructions in the
“major premise” argument that is eliminated upon (the T.mk argument above).
However, K-like reduction also gives us the definitional equality:

example (t : T) : T.rec true t = true := rfl

That is, we are able to reduce on any well-typed major premise argument, with-
out needing an explicit construction — here, it is simply the variable t. While
reducing the recursor application, the kernel is able to “rewrite” t to T.mk
during reduction using [KLR], allowing the LHS recursor application to reduce.

K-like reduction, in combination with Lean’s impredicative Prop universe,
results in non-termination of reduction, as shown by Abel and Coquand [L].

8 In proof assistants, recursors/eliminators are functions that enable the definition of
general transformations on inductive types; they perform a function similar to that
of “pattern matching” in many functional programming languages.



Lean4Less 5

While its use in Lean has proven to be quite successful, such a theoretical lack
of strong normalization may be part of the reason why very few other proof
assistants support it. It does however exist to a limited extent in the Rocq proof
assistant, where it can be enabled with the “Definitional UIP” flagH.

1.3 Meta-Theoretic Challenges

While proof irrelevance, K-like reduction, and other definitional equalities in
Lean are crucial to enabling convenient mathematical formalization, they present
difficulties at the meta-theoretic level, particularly when we want to reason about
or perform transformations on Lean terms based on their typing derivations.
Such definitional equalities also complicate the task of exporting Lean proofs to
other proof assistants, which is important to enable greater proof system inter-
operability and avoid duplication of work in formalizing mathematical results.
Existing work translating Lean to other proof assistants, such as that of Gilbert
in translating Lean to Rocq, rely on the presence of similar features in the
target theory. When such features are not present, direct translation becomes
more difficult. We may instead look into first translating to a more universal
“intermediate theory” from which we can export to several different theories.

In light of this, one promising target for proof export is Dedukti [4], a logical
framework featuring dependent types and rewrite rules to ease the translation
of proofs between proof assistants by translating between various encodings of
different type theories. Dedukti uses the All-calculus modulo rewriting type the-
ory, which is intentionally designed to be as “minimal” as possible to make it a
good candidate for exporting proofs between different proof assistants with var-
ious different type theories. In particular, it does not feature proof irrelevance
or K-like reduction. While proof irrelevance can be encoded in Dedukti in cer-
tain special cases, as was done for the case of predicate subtyping in the proof
assistant PVS [10], an encoding of the general case of proof irrelevance within
Dedukti may not be possible.

Considering the above difficulties, one may wonder whether or not it is pos-
sible to “eliminate” certain (particularly problematic) definitional equalities to
some extent, by translating Lean terms to typecheck in some smaller theory that
does not use them. In some cases, terms may use certain definitional equalities in
“non-essential” ways, and can be rewritten in such a way as to avoid them. How-
ever, there are cases where their use is essential in typing, enabling proofs that
would not otherwise be possible. So, instead of eliminating definitional equali-
ties entirely, we would like to retain them to some extent in our target theory,
demoted to axiomatized/provable propositional equalities that are added to the
typechecking environment, and translating terms to explicitly make use of them
as needed to become typeable in the smaller theory.

9 https://rocq-prover.org/doc/V8.18.0/refman/addendum/sprop. html#
definitional-uigp.
10 See https://github.com/SkySkimmer/rocq/tree/lean-import.
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2 Preliminaries

2.1 Target Theory: Lean™

To this end, we propose our target theory Lean™, where definitional proof irrel-
evance has been replaced with an axiom:

-- proof irrelevance, represented as an aziom
axiom prfIrrel {P : Prop} (pq : P) : EQPpgq

Using this axiom, we can also eliminate K-like reduction, which becomes a prov-
able proposition in this smaller theory:

inductive T : Prop where | mk : T -- K-like inductive type
#check (T.rec : {m : T =+ Sort u} » m T.mk = (t : T) » m t)
theorem T.KLR (t : T) : T.rec true t = true :=

QcongrArg _ _ t T.mk (T.rec true) (prfIrrel t T.mk)

To effect this translation, we can “inject” type casts (a.k.a. transports) around
subterms in order for them to have the expected type that is imposed by a user-
provided type annotation or the typing constraints of the surrounding term. For
example, we can eliminate proof irrelevance when it is used directly:

variable (P : Prop) (p q : P) (T : P =+ Type)
-—= ‘T p° is defeq to T q° (due to proof irrelevance)
def ex (t : Tp) : Tq :=t
theorem congrArg {A : Sort u} {B : Sort v} {x y : A}
(f: A=+B) (h:x=y) : £fx=£fy:= ...
-- explicitly transports a term from type A" to provably equal type B~
def cast {A B : Sort u} (b : A=B) (a : A) : B := ...
def exTrans (t : T p) : T q := cast (congrArg T (prflrrel p q)) t

and also when it is used indirectly via K-like reduction (as shown in T.KLR).

Theoretical Presentation In our target theory Lean™, we have removed [PI]
and [KLR] from Lean’s type theory. We would like to define some translation |- |
on Lean-typeable terms that satisfies a soundness criterion:

I't: A = (prflrrel:V(P: Prop), (p,q:P). Eq pq):: |T|F |t]:|A]

where I' ¢ : T is the notation for Lean™’s typing judgment, and |I'| applies
the translation to every type in context I'. In words, we want the translation of
a well-typed Lean term to be well-typed in Lean™ as the translation of its type.

However, this property alone is not sufficient for our purposes. We would also
like to ensure that type semantics are preserved by our translation. For instance,
a translation that translates all types to the Lean proposition True and all terms
to the constructor True.intro would be able to satisfy the above property. In
particular, we would like to ensure that all translated terms are the same as
the originals except possibly also having been “decorated” with type casts. We
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capture this notion with the similarity relation “~” defined in [20]. Specifically,
we want our translation to satisfy the property that, for all Lean-typeable ¢, we
have ¢t ~ |t|. Such a property also allows translated terms to easily be translated
back to the original theory by simply removing the type casts.

2.2 A Middle-Ground Extensional Theory: Lean_

The above suggests that translating from Lean to Lean™ may be feasible using
type casting. It is reminiscent of what one may do in Lean to align types that
are provably, but not definitionally equal:

-- addition matches on the second operand, so this is not definitional
theorem addOneComm (n : Nat) : Nat.succn =1 +n := ...
inductive Vec : Nat -+ Type where
| nil : Vec O
| cons {n : Nat} (v : Vec n) (x : Nat) : Vec (Nat.succ n)
def vecAppendl (n : Nat) (v : Vec n) : Vec (1 + mn) :=
-- “w.cons 1" has type “Vec (Nat.succ n)~, not “Vec (1 + n)°
cast (congr rfl (addOneComm n)) (v.cons 1)

Term v.cons 1 has the inferred type Vec (n + 1), which doesn’t match the

annotated expected type Vec (1 + n) (Lean’s Nat.add function recurses on
the second argument), so we have to apply a cast around it using an equality
proof between these types, quite similarly to what we did in exTrans above.
This may make us question whether our task is a special case of a translation
from a more general theory. If Lean were to treat the equality of addOneComm as
definitional in the same way that it does prfIrrel, we would not need to wrap

v.cons 1 in a cast. It could do so if we were to, for instance, add a rule that
allows all propositional equalities to be promoted into definitional ones. This
is exactly the rule of “equality reflection” from extensional type the(ﬁy (ETT),
which allows any propositional equality to be considered definitional®.

To obtain this more general extensional theory to translate from, we can
add the “equality reflection” rule to Lean™, obtaining the extensional theory

“Lean, ”:

' A:U, TI'Ets:A TI'E  :t=4s
[RFL)

using the notation I' £ ¢ : T and I' £ ¢ = s for Lean_ ’s typing and definitional
equality judgments. A translation from Lean to Lean_ is simply the identity

1 However, it should be noted that this comes at the cost of rendering typecheck-
ing undecidable — for instance, it is possible to encode the halting problem as a
propositional equality, which we cannot hope to decide during typechecking. For
this reason, practical systems employing extensionality such as Andromeda [3], F*
[17], and Nuprl [2] restrict [RFL] to some subset of provable propositional equalities.
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function, as we have via [RFL]:

' P:U THK pq:P Tk prflrrel pg:p=pgq

(& €

' p=q

which is equivalent to PI. We can derive a similar rule for KLR. In fact, because
Lean_ ’s theory is extensional, Lean’s typing is a strict subset of Lean_ ’s.

So, because we have for any t, ' t: A = I'E t: A, we can reformulate
our problem as one of finding some translation | - | such that:

I'E t: A = (prflIrrel:V(P: Prop), (p,q:P). Eq Ppq):: || |t :|Al

This is an instance of the general problem of translating from extensional to in-
tensional type theory (where any type theory lacking [RFL] is considered “inten-
sional”). Such a translation is possible, with a formally verified implementation
in Rocq by Winterhalter et. al. in ett-to-itt [20,21], which builds on previous
work by Oury [12] and Hofmann [9], with the first result showing conservativity
of ETT over ITT demonstrated by Hofmann [g].

This translation places certain restrictions on the target intensional theory,
namely that it exhibits propositional UIP and function extensionality. Our target
theory of Lean™ satisfies UIP thanks to prfIrrel:

theorem UIP {A : Sort u} (xy : A) (pq: x=y) : p=gq :=prflrrel p q

Lean™ also satisfies function extensionality with the theorem funext from the
Lean standard library, where it is proven through the use of quotient types:

-= (module “Init.Core-)
theorem funext {A : Sort u} {B : A =+ Sort v} {f g : (x : A) » B x}
(h: (x: A »fx=gx) :f=g:=...

Restrictions are also placed on the source extensional theory by requiring ETT
syntax with domain- and codomain-annotated lambda and application construc-
tors, which Lean does not have. We skirt this requirement through the use of an

extra “ hUV” premise in our application congruence lemma (see Section 4.1)).

Our theories can be summarized in the following table:

Theory Rules -
Lean™ (F) [PI-] Lean
Lean () |[PI], [KLR]|Lean_

Lean, (F)|[PI-], [RFL]

Practically speaking, our translation does not need to implement a full ETT-to-
ITT translation. We only care about translating terms that are already typeable
in Lean, so proof irrelevance is the only definitional equality we need to make
explicit. Nevertheless, this does not afford us any real simplifications in the trans-
lation algorithm. Proof irrelevance may be used during typechecking to the same
extent as general extensional equalities, as there are no syntactic restrictions on
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where proofs can appear in terms. In particular, they can appear within t pes,
leading to some fairly complex translations (an example is given in )

Such a translation must generalize the equality type Eq to the heterogeneous

equality type HEq, which is able to take different left- and right-hand side types:

inductive HEq : {A : Sort u} -+ A + {B : Sort u} + B = Prop where
| refl (a : A) : HEq a a

This is a different formulation of heterogeneous equality from the one used by
Winterhalter et. al. in [20], where the construction also carries a proof of equality
of the left- and right-hand side’s types. While such a formulation makes for more
convenient proofs of translation correctness, it is less convenient for an actual
implementation (where it is not necessary to prove equality of these types). so
we instead choose to return to the “John Major equality” used by Oury [12],
which is a more compact and equivalent formulation already defined in the Lean
standard library in the HEq type (JMeq in the Rocq standard library).

We conjecture that the conservativity result of Hofmann can be adapted
to show conservativity of Lean over Lean™. Specifically, the soundness property
presented above is sufficient for a constructive proof of this conservativity result.
Given an implementation of our translation, showing this soundness property is
the task of showing that the implementation is correct according to the program
specification, requiring that the translation produces output terms that are well-
typed in Lean™ and are semantically equivalent to the input terms. We suspect
that such a proof will bear many similarities to the proof by Winterhalter et. al.

3 Implementation Overview
3.1 Adapting ett-to-itt?

Although a Rocqg-verified translation from ETT to ITT already exists in the
ett-to-itt repository [21], which could be extracted to an executable OCaml
program [[]] and possibly used in our translation, there would be a number
of challenges associated with this approach (described in more detail in
endix B)). In particular, the extracted code would require as input some repre-
sentation of Lean typing derivations, which Lean currently provides no way to
obtain. Therefore, we prefer to instead take the approach of modifying an exist-
ing typechecker to construct a translation in parallel to typechecking, where we
have access to the typing derivation steps implicitly from the steps taken by the
typechecker in deciding the well-typedness of Lean terms.
Such an approach would allow us to handle Lean’s definitional equalities on
a more modular basis, being able to choose which ones we eliminate at the level
of the translation itself, rather than as a post-processing step. It will also allow
us to retain some runtime optimizations in the Lean kernel that could translate
into output optimizations, and, using utilities offered by the typechecker such as
type inference and weak head normal form computation, more easily implement
some output optimizations of our own (see ) Also, by performing our

translation in parallel to typechecking, we can implement a translation that only




10 R. Vaishnav
inserts tvpe casts where necessary for the term to be well-typed in Lean™ (see
) — effecting, in this way, a kind of “patching” typechecker.

3.2 Modifying Lean4Lean

A promising Lean kernel implementation to modify to achieve our translation is
Carneiro’s “Lean4Lean” [], a port of Lean’s C++ kernel typechecker code into
Lean, with the beginnings of the formalization of certain meta-theoretical prop-
erties in the direction of the MetaRocq project [L6]. Modifying a typechecker
that is implemented in Lean itself provides us with several benefits. As Lean
is a partly bootstrapped language, many of its higher-level features are imple-
mented exclusively in Lean, which use a number of helper functions for traversing
and constructing expressions, manipulating free/bound variables, modifying the
typechecking environment, etc., that will be useful in our own implementation.
Also, Lean’s orientation towards formal proof and typechecking afford us certain
“soft” guarantees in the correctness of our implementation. An implementation
in Lean also leaves the door open to an eventually fully verified translation, on
account of Lean’s capabilities as a general theorem prover.

Lean’s typechecker implements a bidirectional typechecking algorithm using
these three primary mutually recursive functions (found in TypeChecker.lean):

-- type inference

def inferType (e : Expr) : RecM Expr :
-- definitional equality check

def isDefEq (t s : Expr) : RecM Bool :
-- weak-head normalization

def whnf (e : Expr) : RecM Expr := ...

— inferType is a type inference function that checks that e is well-typed
(throwing an error if it is not), returning its inferred type.

— isDefEq returns whether or not the well-typed terms t and s are defini-
tionally equal according to Lean’s definitional equality judgment.

— whnf reduces an expression to its weak-head normal form (WHNF). It is a
subroutine of isDefEq, where terms must sometimes be (partly) reduced to
determine if they are definitinally equal.

In “Lean4Less”, our translation implementation adapted from Lean4Lean, we
modify the return values of these functions as follows:

def inferType (e : Expr) : RecM (PExpr x Option PExpr) := ...
-— 7 "patched" "e~
def isDefEq (t s : PExpr) : RecM (Bool x Option EExpr) -
-- " proof of "HEq t s~
def whnf (e : PExpr) : RecM (PExpr x Option EExpr) := ...
-= " proof of 'HEq e (whnf e)’

( PExpr and EExpr are Lean4Less-specific types for representing translated terms
and equality proof, respectively). All three functions optionally return a patched
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expression/equality proof depending on whether proof irrelevance was used in
typing/definitional equality checking. If it was not, then we return Option.none,
indicating that no equality proof/translation was required.

The inferType function may now also return a translated version of the
input_expression injected with transports where required by typing constraints
(see Bection 4.2) — note that the first return value is the original inferred type
return value, and we maintain that this inferred type is Lean™ -typeable (that is,
it is a translation to Lean™ of the type that would have normally been inferred
by LeandLean’s inferType function). The isDefEq function now also possibly

returns a generated proof of equality between the input terms, and the whnf
function may also return a proof of equality between the input term and its weak
head normal form. Both functions return heterogeneous equality proofs with the
type HEq (in particular, whnf must also return a heterogeneous equality proof
because the type of the input term may change during reduction).

A returned proof from isDefEq or whnf can be interpreted as a “trace”
of the typechecker’s steps in deciding definitional equality /performing WHNF
reduction. For instance, if the typechecker determines that the applications f a
and f b are definitionally equal, where proof irrelevance was used at some point
when comparing a and b to produce a proof term p : a = b, Leand4Less will

construct a proof using (the HEq equivalent of) Lean’s congrArg lemma in

order to produce the proof term congrArg f a bp : f a =f b.

3.3 Verification

Once we have our translated output from Lean4Less, we can verify that it is well-
typed in Lean™. Specifically, for some output environment E¥ translated from
an input environment E, we typecheck E¥ using a modified fork of Lean4Lean
with proof irrelevance and K-like reduction disabled. We must also verify that
our translation did not change the semantics of annotated constant types as a
result of translation — as explained in , the output of our translation
should only “decorate” the input with casts between types that are already Lean-
defeq. For this, we generate a verification environment E7 containing equality
theorems between the original and translated types of every defined constant,
proven by reflection. We then typecheck E7 with the normal Lean kernel. Our
translation and verification workflow is summarized in the diagram below:

| PatchTheorems.lean |—)(Lean .Elab. runFrontend)

input .olean files [

| thn appHEq, thn lamHEg, ...

thm prflrrel := rfl

verification
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4 Implementation Details

4.1 Congruence Lemmas

In the process of translating from Lean to Lean™, we use a number of special-
ized definitions to cast terms and build the needed type equality proofstd. In
particular, we need a set of “congruence lemmas” to compose equality proofs
from the proofs of equality of corresponding subterms, for the forall, lambda,
and application cases:

theorem forallHEqQABUV' {A B : Sort u} {U : A = Sort v} {V : B =+ Sort v}
(hAB : HEq A B) (hUV : (a : A) » (b : B) - HEq a b + HEq (U a) (V b))
: HEq ((a : A) 2 Ua) ((b:B)»Vb) := ...

theorem lambdaHEqABUV' {A B : Sort u} {U : A = Sort v} {V : B =+ Sort v}
(f: (a:A) »Ua) (g: (b:B) +Vhb)

(hAB : HEq A B) (hfg : (a : A) » (b : B) » HEg a b = HEq (f a) (g b))
: HEq (fun a => f a) (fun b => g b) := ... -- (uses funext)

theorem appHEQABUV' {A B : Sort u} {U : A - Sort v} {V : B = Sort v}
(hAB : HEq A B) (hUV : (a : A) » (b : B) - HEq a b » HEq (U a) (V b))
{f: (a@a: A ~»Ualr{g: (b:B) »Vb}t {a: A} {b : B}

(hfg : HEq f g) (hab : HEq a b)
: HEq (f a) (g b) := ...

appHEQABUV' contains the additional hypothesis hUV that allows us to equate

U and V in the proof. This enables us to prove the lemma without the presence
of domain- and codomain-annotated lambda and application constructors, which
was a requirement on the source ETT syntax imposed by [20] in order to be able
to prove a version of this lemma that does not carry this hypothesist. While
it may seem feasible to derive this hypothesis from the equality of the types of
f and g implied by hfg, this is not possible in Lean without the addition of a
“forall ” axiom with the signature:

axiom forallEta : ((a : A) = Ua) = ((a: A »Va U=V

Assuming such an axiom breaks some theoretical properties of Lean, in particular
its interpretation_under a cardinality model where all types of equal size are
considered equaltd.

12 The full list of translation-specific constants can be found here: https://github.
com/rish987/Lean4Less/blob/main/patch/PatchTheorems.lean

13 For a verified translation, using this hypothesis requires a proof that it can always
be inhabited, which has not been shown in the formalization of Winterhalter et. al.
[21]. Practically speaking, however, we have not yet had any problems proving this
hypothesis on-the-fly as a part of our translation.

14 If we assume this axiom, we can show a counterexample to the cardinality model as
follows: Let A := Fin 2,andlet U := fun x => if x = 0 then Bool else Unit
and V := fun x => if x = 0 then Unit else Bool. Then, we have the function
type cardinalities |(a : A) =+ U al = |[(a : A) =+ V al = 2, allowing us to derive
U = V from forallEta. By application congruence U 0 = V 0, which contradicts
that |U O] = 2 # |V 0| = 1.


https://github.com/rish987/Lean4Less/blob/main/patch/PatchTheorems.lean
https://github.com/rish987/Lean4Less/blob/main/patch/PatchTheorems.lean
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We also need the proof irrelevance axiom and its extension to provably equal
proof types, and, for convenience, we add a heterogeneous cast function:

axiom prfIrrel {P : Prop} (pq : P) : EQpq
theorem prflrrelHEq {P : Prop} (pq : P) : HEQ p q := ...
theorem prfIrrelHEqPQ {P Q : Prop} (hPQ : HEq P Q)
(p :P) (q:Q :HEqpgq := ...
def castHEq {A B : Sort u} (h : HEQ AB) (a : A) : B :=
cast (eq_of_heq h) a

These constants, along with all of their dependencies, need to be enumerated
to LeandLess to be added to the environment first, since any later definitions
may reference them as a result of translation. Importantly, they must already
be well-typed in Lean™ and should not require translation themselves, since this
could result in cyclic self-references (see )

4.2 Producing Patched Terms

During translation, the output is obtained by “injecting” type casts into the
terms in places where expected and inferred types are not Lean™ -defeq. Expected
type requirements can arise either from user-provided annotations or from typing
restrictions imposed by Lean’s type theory. These type casts require a proof of
equality between their expected and inferred types, which is computed with a
call to isDefEq. More details on this computation are provided in .

User-provided type annotations can come from constant signatures or let
bindings. In the case that the annotated types do not match, we cast the entirety
of the constant/let body. Checking that constant type signatures and inferred
body types are equal is performed at the highest level of translation/typechecking,
that is, when adding constants to the environment. Checking let bindings, on
the other hand, occurs as a subroutine of type inference.

Type casts may also be inserted due to the following Lean typing rules:

F'A:Sortu T.z2:AFe:B I'FA:Sortu Iz:AF B: Sort v
’ (LAM) (PI)
Fe:AFXx: A e:Vx:A B I'FVz: A B: Sort (imax u v)
The: A.B TFe:A I'FA:Sortu I'te: A Tz:AFb: B
L TR (APP) (LET)
Pkee : Ble/x] TFH let (x:A):=einb: Ble/x]

The rules LAM, PI, and LET require the binder types (and output type, in the
case of PI) to be sorts, so these types may be cast if their inferred types are not
Lean™ -defeq to some Sort u. Typing restrictions are also enforced by the APP
case above, where the domain type of the function must definitionally match the
inferred type of the argument, with the argument being cast if this is not the
case. The function itself may also be cast, if its inferred type is not Lean™ -defeq
to some function type.

The translation of a Lean constant is identical to the original, save for the
fact that various subterms may have been “decorated” by casts (that is, they are
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related by the “~” similarity relation described in [20)]). It is easy to recover the
input Lean term from its Lean™ translation: one must simply remove all type
casts introduced by the translation, which are easy to identify as they use the
translation-specific L4L.castHEq cast function.

4.3 Output/Runtime Optimizations

Output and runtime optimizations are particularly important for a tool like
Lean4Less, to be able to scale up the translation to large libraries and to have
a reasonably sized output that avoids redundancy. Additionally, it is important
to have an efficient implementation that enables the translation to complete
within a reasonable amount of time. By virtue of being based on an efficient
typechecker implementation, Lean4Less already enjoys many output and runtime
optimizations that transfer over from the kernel. For instance:

— Lean implements a “lazy d§-reduction” optimization in its isDefEq check, in
which it avoids expanding equal §-expandable constant function application
heads where possible, opting to first perform a comparison on each pair of
arguments. This translates to an output optimization in which we can also
avoid expanding these constants in the output when generating equality
proofs.

— Lean’s proof irrelevance check is placed very early on in the isDefEq check,
ensuring that we do not needlessly compare proof subterms if we already
know that the proof types are equal (thus making the proofs definitionally
equal by proof irrelevance). This also becomes an output optimization, be-
cause we can immediately output an equality proof using the prfIrrel
axiom, rather than producing a larger proof resulting from a more detailed
comparison of subterms.

— Lean’s kernel makes use of a cache for recording previously computed weak-
head normal forms. Lean4Less adapts this cache to store a reduction proof
in addition to the weak-head normal form itself, and can be queried before
attempting a WHNF computation to avoid an unnecessary computation.
This translates into an output optimization since these redundant proofs
will also share object pointers in the output.

Lean4Less also implements some optimizations of its own (not described here).

5 Results

We have tested our translation on the Lean standard library and various lower-
level Mathlib modules, verifying our output in the manner described in

ion 3.3. We have already had success in translating significant subsets of Mathlib
to Lean ™, for instance Lean’s real numbers library Mathlib.Data.Real.Basic,
containing several thousands of lines of code and thousands of uses of proof
irrelevance and K-like reduction.
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We benchmark our translation on Std, the Lean core standard libary, and
on the mathlib library Mathlib.Algebra.0Order.Field.Rat, with the versions
of both libraries using Lean toolchain v4.16.0-rc2. We report below on some

measures relating to the translation of these modules on a machine with an Intel
Xeon 8-core CPU @ 2.20GHz and 32 GB RAM:

Input/Output

Constants Using Input/Output T i -
Module Total PI/KLR (% of | Environment Size Trane.l?mon Ty pechéckmg
Constants total) (Overhead) Runtime Runtime
o ~ (Overhead)
- 226MB/261MB ] 2m19s/3m9s
Std 29859 1736/134 (6.3%) (15.5%) 18m02s (36.0%)
=\ [ N [ < /R -
Algebra.Order.Field.Rat | 113899 | 2065/237 (2.8%) 148‘]‘\83{01‘))011\“3 32m16s om(1115/6;n)445
. 0 . 0

The standard library translation overhead of 15.5% is not very excessive
relative to the 6% of total constants using proof irrelevance/K-like reduction, and
we observe an even more modest translation overhead when translating an actual

Mathlib module. In both cases, however, this is somewhat disproportionate to
the amount of extra typechecking runtime overhead translation incurs. It is not
clear how much of this overhead is truly unavoidable, but more work can certainly
to be done to optimize the output size.

We can see above that translation takes significantly longer than typecheck-
ing, and we have found that the translation tends to get “stuck” for significant
amounts of time translating certain constants, sometimes taking longer than
ten minutes to translate a single definition. Such long-running translations also
consume significant amounts of memory, which has proven to be a prohibitive
factor in attempting to translate larger mathlib libraries. Further investigation is
needed here. Such slowdowns may be related to general scaling problems that are
closely tied to output inefficiencies, and may be resolved through the implemen-
tation of further output optimizations (for instance, the generation of auxiliary
helper definitions). This may also be addressed through more efficient use of
caching, for example in EExpr.toExpr computations, which we have observed
to take up a disproportionate amount of computation time.

6 Prospects

Because Lean4Less implements a special case of the ETT-to-ITT translation,
an immediate interest is the possible adaptation of its translation framework
for use in a general extensional-to-intensional translation. This could enable the
adoption of new, possibly user-specified definitional equalities in Lean, while
maintaining the ability to translate back to Lean’s core type theory, producing
terms that are checkable with the same small, trusted kernel. Such a development
could take Lean in the direction of being an extensional proof assistant, which

15 When run with the Lean and Lean™ kernels, respectively (i.e. Lean4Lean with and
without PI/K-like reduction)
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could significantly simplify many reasoning tasks where equality goals and hy-
potheses feature prominently. More details on this possible future development
are provided in

Another potential benefit of having a translation from Lean to Lean™ is that
it can simplify meta-theoretical analyses of Lean’s type theory by enabling us
to use Lean™ as a “proxy theory” for Lean itself. The general idea is that any
meta-theoretical result shown for Lean™ would automatically transfer to Lean,
provided the correctness of the translation implementation. More details are
provided in endix H|.

Additionally, while this work primarily concerns a particular implementation
of an extensional-to-intensional translation applied specifically to eliminating the
use of proof irrelevance in the typing of Lean terms, the framework developed
for Lean4Less should be general enough to extend to eliminate other definitional
equalities present in the Lean kernel, for instance the “struct eta” rule (and
its reduction counterpart), and Lean’s special reduction rules for quotient type
eliminators. In addition, the techniques and optimizations developed here could
be transferrable to similar translations implemented for other proof assistants,
either for the purpose of proof export or for extending them to have extensional-
like features of their own.

7 Conclusion

In this paper, we describe the theory, design, and implementation of a tool that
is capable of translating Lean to smaller theories through the implementation
of a more general translation framework from extensional to intensional type
theory. We have described how we have adapted our translation from an inde-
pendent typechecker kernel implementation for Lean called “Lean4Lean”. Our
tool, “LeandLess”, has been successfully able to translate certain medium-sized
libraries, and we hope to scale up our translation to handle larger formalizations.
We believe that this work sets the foundation for the first practical translation
from extensional to intensional type theory that has been implemented for a
proof assistant. Such a translation may enable future extensions to the Lean
kernel, allowing for more convenient mathematical formalization while retain-
ing the ability to translate terms back to the original theory to typecheck with
the same small, trusted kernel. Additionally, while this work primarily concerns
a particular implementation of a extensional-to-intensional translation applied
specifically to eliminating the use of proof irrelevance in the typing of Lean terms,
the general techniques and optimizations developed here could be transferrable
to similar translations that may be implemented for other proof assistants.

Disclosure of Interests. The author claims no competing interests.
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A A Complex Translation

Lean4Less may produce complex translations in particular as a result of proofs
appearing in dependent types, as demonstrated in the example below:

-- HEq wversion of “congrArg’
theorem appHEq {A B : Type u} {U : A + Type v} {V : B = Type v}
{f: (a@a: A ~»Uat{g: (b:B) »Vb}t{a: A} {b : B} (hAB : A
(huV : (a : A) » (b : B) - HEq a b » HEq (U a) (V b))
(hfg : HEq f g) (hab : HEq a b)
: HEq (f a) (g b) := ...
theorem eq_of_heq {A : Sort u} {aa' : A} (b : HEqa a') : a =a' := ...
-- proved using “prflrrel’
theorem prfIrrelHEqPQ {P Q : Prop} (h : P=0Q) (p : P) (q : Q : HEq p q :

B)

variable
(P : Prop) (p q : P)
(Q : P~ Prop) (@ : Qp) (Qq : Q @
(T: (p:P)~»Qp ~ Prop)

def ex (¢t : TpQp) : TqQq :=t
-— with proof irrelevance, "t  would have sufficed
def exTrans (t : Tp Qp) : T q Qq := cast (eq_of_heq
-- HEq (T p Qp) (T q Qq)
(appHEq
—Hdp=0g
(congrArg Q (eq_of_heq (prfIrrel p q)))
-— HEq Prop Prop

(fun _ _ _ => HEq.rfl)
-- HEq (T p) (T q)
(appHEq rfl ... HEq.rfl (prflrrel rfl p q))
-- HEq {p Qg
(prfIrrelHEQPQ
—Qp=0q
(congrArg Q (eq_of_heq (prfIrrel p q)))
Qp Q@)))

t

Here, we must produce a proof of equality between T p Qp and T q Qq. Equal-
ity between the partial applications T p : Q p » Propand T q : Q p + Prop
must necessarily be stated as a heterogeneous equality HEq (T p) (T q), be-

cause their types are not Lean™ -defeq; we use appHEq to construct this proof.

We next have the task of showing (heterogeneous) equality between the argu-
ments Qp : Q p and Qg : Q g. In Lean, Qp and Qq are definitionally equal

on account of proof irrelevance, since their types Q p and Q q are definitionally
equal propositions, again by proof irrelevance, which lets us equate p : P and

q : P. This nested use of proof irrelevance introduces some more complexity:
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to prove equality between Qp and Qq, we must use the heterogeneous version of

the proof irrelevance lemma, prfIrrelHEqPQ, that requires a proof of equality

between the propositional types Q p and Q q and produces a heterogeneous

equality proof.

B

Problems with a Translation Extracted from
ett-to-itt

A ETT-to-ITT translation implementation could theoretically be extracted from
a constructive formal proof of conservativity of ETT over ITT, like that found
in ett-to-itt [21]. While this would have the benefit of providing us with a
verified, bug-free program implementing this translation, it would also leave us
with a number of practical drawbacks:

— The translation formalized by ett-to-itt takes as input extensional typing

derivations, rather than expression terms. Lean currently has no represen-
tation or output of typing derivations, so we would have to construct these
derivations ourselves, likely by modifying a kernel implementation to pro-
duce them as “traces” of typechecking — a more efficient translation can
be implemented by modifying a kernel implementation to directly output
translated terms without the need for an intermediate typing derivation.

ett-to-itt’s input derivations are assumed to come from a minimal exten-
stonal theory which is that does not contain Lean’s theory. To align a Lean
derivation with this minimal theory, we would have to do some preliminary
alignment on the derivation to eliminate uses of Lean-specific typing rules,
such as proof irrelevance, struct- and K-like reduction, quotient reduction,
struct and function eta, etc. This will likely consist of replacing any uses of
such rules with applications of [RFL] using the relevant lemma/axiom (as we
have done above in replacing [PI] with [RFL] using the axiom prfIrrel).

ett-to-itt’s output terms are typeable in a minimal intensional theory. We
would correspondingly have to do some post-processing on this output in or-
der to recover Lean-typable terms that do not use the extra axioms/lemmas
introduced in the pre-processing step described above (except for the ones
corresponding to definitional equalities that we are actually trying to elimi-
nate).

The output of ett-to-itt will likely be unacceptably large because it is
directly derived from a formalization that makes an only very limited at-
tempt at optimizing the output size (by eliminating redundant casts up to
B-equivalence of the types being cast). Attempting some post-hoc optimiza-
tions on this large output will likely be an unwieldy task with sub-optimal
outcomes.



Lean4Less 21
C Bootstrapping Lemmas

The congruence lemmas shown in are all proven in Lean with the
usual high-level Lean tactics®d. As elaborated, they are in fact already valid

Lean™ proofs — they happen to not use proof irrelevance or K-like reduction in
their typing, so their translation to Lean™ amounts to the indentity function
with no risk of introducing cyclic references. However, they rely on the defini-
tion eq_of_heq, which, as defined in the Lean standard library, requires K-like
reduction in order to type (this relates to the UIP requirement on the target
intensional theory described by Winterhalter et. al. [20]). In translating from
Lean to Lean™, implicit uses of K-like reduction are made explicit. and so the
use of UIP in Lean™’s definition of eq_of_heq must also be made explicit.

Therefore, translating Lean’s definition of eq_of_heq to Lean™ has the risk
of introducing cyclic references. In particular, the translation as currently im-
plemented always uses castHEq — whose definition references eq_of_heq— to
explicitly align types, even when it is not strictly necessary to use heteroge-
neous equality in the first place.This creates a dependency cycle (eq_of_heq —
castHEq — eq_of_heq). To get around this issue, for now we have chosen to
manually translate the lemma, making use of the extra lemmas appArgHeq and

forallEqUV' — Eqg-adapted forms of the corresponding HEq congruence lem-
mas — avoiding the use heterogeneous equality in the proof. This leaves us with
the following three “bootstrapping lemmas”:

theorem appArgEq {A : Sort u} {U : Sort v}
(f : (a: A ~»U) {ab: A} (hab : EQab) : Eq (f a) (f b) := ...
theorem forallEqUV' {A : Sort u} {UV : A - Sort v}

(hUV : (a : A) » Eq (Ua) (Va)) : Eq ((@a : A) »Ua) ((b: A +Vb) := ...

-- manual translation of stdlib's definition of “eq of_heq  to Lean-
theorem eq_of_heq {A : Sort u} {ab : A} (h : HEQ a b) : GEQ A ab := ...

The translation then overrides the standard library’s definition of eq_of_heq
with this one, as opposed to creating a fresh translation-specific definition. This
is done as a convenience for the congruence proofs, whose tactics (e.g. the subst
tactic) produce uses of eq_of_heq.

D Producing Equality Proofs

With respect to the modified functions checking for definitional equality between
terms, most of them combine and propagate equality proofs that are produced
by their subroutines and do not produce proofs themselves at a “base level”. The
three functions that do generate such “base proof terms” are isDefEqProofIrrel,

16 The proofs themselves can be found here: https://github.com/rish987/
Lean4less/blob/main/patch/PatchTheorems.lean
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toCtorWhenK, and isDefEqFVar; our modifications to these functions are de-
scribed below.

We adapt the kernel function isDefEqProofIrrel, which checks whether
two proof terms are equal by proof irrelevance (if they have Lean-defeq propo-
sitional types), to generate a proof of equality between the proof terms using
the prfIrrel axiom. If isDefEq returns a proof of equality between the propo-
sitional types, this means that proof irrelevance/K-like reduction was used at
some point in the equality check, so these propositions might™d not be defini-
tionally equal in Lean™ . In such a case, therefore, we would need to we use
the proof irrelevance lemma prfIrrelHEqQPQ which takes this explicit proof of
equality between the LHS and RHS proof types (and returns a heterogeneous
equality proof). Otherwise, we can return a proof using prfIrrelHEq, which
assumes that the LHS and RHS propositions are the same. As an additional
optimization, this function may also return none if the proofs themselves are
computably Lean™ -defeq in a small number of steps.

We generate a similar proof in the case of K-like reduction. The function
toCtorWhenK, called by recursor reduction function inductiveReduceRec, gen-
erates a proof of equality between the major premise e of a K-like inductive re-
cursor application and the unique constructor application implied by the inferred
K-like type of e, which is then substituted in for e in the term being reduced in
order to continue the reduction (as in the proof of K.KLR in ) This
proof is a direct use of proof irrelevance (recall that K-like inductives must live
in Prop), and, similarly to the proof irrelevance check in isDefEqProofIrrel,

may use prfIrrelHEQPQ if the types of e and the unique constructor application

are not Lean™ -defeq.

Another place where we may generate base equality proof terms is in equating
pairs of free variables introduced by the variable-binding proof arguments of cer-
tain congruence lemmas: specifically, hUV in forallHEqABUV' and appHEqQABUV',

and hfg in lambdaHEqQABUV'. We “register” the variables as being provably
equal in the translation’s monadic context:

structure TypeChecker.Context : Type where

-- stores fvar triples as the map (z : A), (y : B) -> (hay : HEq = y)
eqFVars : Std.HashMap (FVarId x FVarId) FVarId := {}

(corresponding to the triple-valued context computed by the “Pack” function
of Winterhalter et al. [20]), and add a free variable-specific equality check that
returns an equality proof using the relevant variable equality hypothesis.

17 Note that isDefEq might produce equality proofs even if the terms are already
Lean™ -defeq— specifically, this happens when proof irrelevance is used in a “non-
essential” way in checking that they are definitionally equal.
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E Adding Extensionality to Lean

Given that Lean4Less’s implementation of a translation framework is based on
an general ETT-to-ITT translation, an interesting prospect its possible adapta-
tion for the purpose of translating Lean terms from some more powerful theory
that has been extended with additional definitional equalities back to the orig-
inal theory. Indeed, as Lean4Less is implemented in Lean, it could be modified
to make it capable of eliminating general, user-defined equalities beyond those
already defined in Lean. That is, it could accept input terms from some hypo-
thetical user-defined extensional theory “Leane«”, which is Lean extended with
some kind of limited equality reflection rule:

Dl A: Uy Tles t,u: A compeq(T, A, t,u)
INk<t=u

[RFL¥|

where the compeq(T', A, ¢, u) criteria states that, in context ', ¢ =4 u is provable
automatically in Lean, due to it having been registered directly by a user, or
being derivable from other registered equalities. The Lean kernel itself could then
be extended to accept user-defined extensional equalities, with the assurance
that it will be possible to translate it back to the original intensional theory
via LeandLess. On the other hand, if we wish to continue using the current
Lean kernel, another option is to integrate Lean4Less with existing elaboration
routines to allow for a real-time translation that would simulate native kernel
support for extensional reasoning (see for a comparison of this
possible approach with existing automation for generating equality proofs in
Lean).

Regarding the user input of extensional equalities, it will be important to
distinguish between “directed” and “undirected” equalities. Undirected equal-
ities are analogous to proof irrelevance, struct and function eta in Lean, and
are implemented in the kernel’s isDefEqCore function. Suppose we have the

hypothetical constant annotation @[deq] marking an equality theorem as an
extensional definitional equality that “known” to the kernel. This would allow
us to prove the following theorem by reflection:

@[deq]
theorem addComm (x y : Nat) : x + y =y + x := ...
example (x y z : Nat) : x + (y + z) =x + (z +y) := rfl

Here, Lean checks the definitional equality of the arguments in turn, invoking
[RFL*] via addComm on the second argument of the outermost addition.

However, an undirected definitional equality would not allow us to prove the
following:

-- (Lean's addition function matches on the second argument,
-- so this does not hold definitionally)

@[deq]

theorem incEq (x : Nat) : 1 + x = Nat.succ x := ...

-= cannot be proven with “rfl’

example (x y : Nat) : y + (1 + a) = Nat.succ (y + a) := sorry
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The problem is the following: for the outermost application to reduce, the second
argument’s weak-head normal form must be an application of Nat.succ, which
is not the case for 1 + a. While 1 + a is definitionally equal to Nat.succ a
by incEq, this equality does not apply when computing its weak-head normal
form.

Here, we instead require a “directed equality” (a.k.a. “rewrite rule”) that can
be applied during reduction, allowing us to “rewrite” the addition to a construc-
tor application. Let us use the hypothetical annotation @[drw] to register a
directed extensional equality theorem, enabling here a proof by reflection:

@[drw]
theorem incEq (x : Nat) : 1 + x

= Nat.succ x := ...
example (x y : Nat) : y + (1 + a) =

Nat.succ (y + a) := rfl

Directed equalities may seem to be strictly more powerful than undirected ones,
but they are only practically applicable as long as they satisfy the properties
of termination and confluence, which are well-studied in other systems such
as Dedukti [4] where rewrite rules are built-in. Without a terminating set of
rewrite rules, typechecking/elaboration will also not terminate (for instance, it
would not be acceptable to register the commutativity of addition as a directed
equality). Confluence is an important property in ensuring that the user-provided
reduction rules are unambiguous — in particular, it ensures that definitional
equality checking via comparison of normal forms effectively decides equational
theory that they define®d. Termination and confluence must also be considered
in light of the reduction rules that Lean natively implements, namely those of
recursor, K-like, struct-like and quotient reduction.

F Simplifying Theoretical Analyses

We conjecture that Lean is a conservative extension of Lean”, as a special case
of the conservativity of ETT over ITT shown by Hofmann [§]. In light of this,
we may wonder about the extent to which Lean™ can be used as a “proxy
metatheory” for Lean for the purpose of simplifying meta-theoretical analyses.
Carneiro’s Lean4Lean project to formalize Lean’s metatheory [f] faces some
difficulties in soundness analyses particularly attributable to features such as
proof irrelevance and K-like reduction, and the more recent features of “struct
eta” and “struct-like reduction” (whose elimination should also be under the
scope of the LeandLess translation). So, certain important meta-properties of
Lean may be significantly easier to show in the smaller theory of Lean™ where
these problematic features have been removed®.

8 The equational theory defined by a rewrite system is the reflexive, transitive, sym-
metric closure of the relation between terms defined by the individual rewrite rules.
19 Tn particular, previous examples of non-termination and undecidability of typecheck-
ing shown by Carneiro [f,5] have depended on the use of definitional proof irrelevance
and K-like-reduction. These features do not exist in Lean™, so it is an open question
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A proof of conservativity of Lean over Lean™ is particularly interesting with
respect to the soundness property, since it would imply that any axiom-free
proof of the proposition False in Lean would translate into a semantically
equivalent and typeable proof of False in Lean™ . Therefore, the consistency of
Lean™ would imply the consistency of Lean. In the style of ett-to-itt [21],
such a conservativity proof may be attainable constructively through a proof
of correctness of the translation implemented by Lean4Less. Namely, we can
try to show that Lean4Less’s implementation ensures the property that on all
well-typed, terminating Lean input environments, it terminates and produces
well-typed, semantically equivalent Lean™ output environments, from which a
conservativity proof would immediately follow.

Attempting such a proof of program correctness could also be quite inter-
esting from the perspective of identifying potential soundness bugs in Lean’s
kernel implementation. The ability to eliminate a certain definitional equality
from Lean testifies the fact that its inclusion as a convenience for formalization
does not expand the class of provable propositions in any meaningful way, so in
particular there is no possibility of it introducing consistency issues. If we en-
counter any significant difficulties in trying to construct this proof, it may in fact
be the case that conservativity is not provable, on account of an issue in the ker-
nel implementation of one of the eliminated definitional equalities that renders
Lean inconsistent, while the smaller theory lacking the problematic definitional
equality is in fact consistent.

Moreover, having a translation restricting Lean to a smaller subset of def-
initional equalities could ease the formal verification of an implementation of
a smaller canonical typechecking kernel for Lean@, even before the translation
has been formally verified. Delegating the Lean4Less translation and the current
typechecking kernel to the “untrusted” portion of Lean’s code base, the smaller
Lean™ kernel can take the place as the “official” trusted Lean kernel, provided
that the translation is empirically successful in translating any input environ-
ment is checkable with the original kernel. However, such an endeavor would
require significant runtime/output optimizations to the translation to ensure
that it can scale to translating large libraries such as Mathlib.

whether or not the same issues affect the smaller theory of Lean™. We conjecture
that both decidablilty of typechecking and termination may in fact hold — if still
not entirely, then perhaps at least with much weaker assumptions — without K- and
struct-like reduction.
Note that we likely still cannot have a provably terminating typechecker for Lean™.
If Lean really is conservative over Lean™ (which would follow from having a veri-
fied translation), the termination of a Lean™ kernel would not be possible to prove
within Lean itself as this approaches Godel’s Incompleteness Theorem. So unfortu-
nately, it is likely that we would still be limited to reasoning about the Lean™ kernel
implementation in terms of partial, rather than total correctness.

20
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G Regarding Lean’s cc/grind Tactic

Some of the functionality suggested in for allowing Lean to decide

a larger class of definitional equalities may be reminiscient of automation al-
ready present in Lean for congruence closure [L5], which was first introduced
in Lean 3’s cc tactic, and more recently superceded by Lean 4’s grind tac-
tic. Lean’s congruence closure procedure uses a powerful algorithm widely used
by SMT solvers that attempts to find an equality proof between two specified
terms, taking local equality assumptions into consideration. The fact that au-
tomation already exists for this purpose may bring up some questions regarding
what potential “benefits” an approach for equality proof reconstruction based
on an extensional-to-intensional translation may have over existing, more well-
established approaches such as congruence closure.

Specifically, one could imagine translating from an “extensional” version of
Lean in which the elaborator automatically calls a congruence closure algorithm
whenever a typing discrepancy is encountered, and, if the algorithm returns a
proof, uses the returned proof to “patch up” the discrepancy via a type cast (as is
already implemented in Lean4Less) to help build a finally elaborated term. Such
an approach could work in principle, however from a practical perspective it is
hardly reasonable. An implicit tradeoff that many proof assistant kernels have
to make is between providing convenient automation that allows the kernel to
identify as many equal terms as possible (avoiding the need for users to manually
provide equality proofs), and providing timely negative feedback in the event of
a typing error. From a user perspective, it would be unacceptable to call the
equivalent of Lean’s grind tactic to try to resolve every single instance of a
typing discrepancy that is encountered. These tactics are much better suited for
when the user already heavily suspects that equality can be proven beforehand.

The approach we suggest is rather to extend the existing kernel isDefEq
routine in simple, limited, and efficient ways, allowing it to identify a larger
class of provably equal terms while minimally sacrificing the responsiveness of
the system in the event of ill-typedness. The proof reconstruction algorithm we
could implement for translating from this extensional version of Lean could then
simply extend on the implementation we already have for Lean4Less’s isDefEq
function. While this may not cover as much as an approach based on a full-blown
congruence closure algorithm in terms of enabling more definitional equalities, it
could be a very reasonable comprimise allowing for some level of user-specified
definitional equalities while still providing adequately quick negative feedback
to the user.
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