universite

PARIS-SACLAY
Translating Proofs from Lean to Dedukti

Thése de doctorat de I'Université Paris-Saclay

Ecole doctorale n° 580, Sciences et Technologies de I'Information et de la Communication (STIC)

Spécialité de doctorat: Informatique
Unité de recherche: Deducteam

Thése présentée et soutenue a ENS Paris-Saclay,
le 10 Mars 2026, par

Rishikesh VAISHNAV

Composition du jury

Herman GEUVERS Rapporteur
Professor, Radboud University Nijmegen

Nicolas TABAREAU Rapporteur
Directeur de recherche, Inria

Christine PAULIN Examinatrice
Professeure, Université Paris-Saclay

Jesper COCKX Examinateur
Maitre de conférences, Delft University of Technology

Sebastian ULLRICH Examinateur
Docteur, Lean FRO

Mario CARNEIRO Examinateur

Docteur, Chalmers University of Technology

Direction de la thése

Frédéric BLANQUI Directeur

$d
(1]
—
(@)
Jud
(@
o
ge]
Q
©
()]
(7))
QD
L
-

o
o
o
<
<
(a
2
o
N
o
N
=
P
=2

Contents

(1__Introduction

(1.2 Lean’s lype Theoryl
(1.2.1 T'ype Inference Rules|
[1.2.2 Definitional Equality Rules|.
Il,2,;i I llf l;f:!l“s:!i(z“ l;sfli!li!l“l

(1.3 Dedukti’'s Type Theory|. o oo
(1.3.1 T'ype Inference Rules|
[1.3.2 Definitional Equality Rules|.

2 Translation Framework]
2.1 __Theoretical Motivationsl
[2.1.1 Completeness|

[2.1.53 Encoding Properties| o000
[2.2 A Pure Type System Encoding|,
[2.2.1 Pure Type Systems|
[2.2.2 Lean as a Pure Type System|.
2.2.3 Encoding Pure Type Systems in NII/R|
[2.2.4 A Pure Type System Encoding for Lean|
[2.3 The Syntax-Level Translation|

[3 Universe Encoding]
[3.1 Encoding a Predicative Universe Hierarchy|
[3.1.1 Deriving a Normal Form|
(3.2 Encoding an Impredicative Universe Hierarchy|
[3.2.1 Deriving a New Normal Form|
[3.2.2 Uniqueness of the Normal Form|
[3.3 Implementation as a Rewrite System|,
[3.3.1 Base Encodingl oo
[3.3.2 Deriving a Normalizing Rewrite System|.
[3.3.5 A Hybrid Encoding| oo

[4 Encoding Lean’s Definitional Equalities|
[4.1 Deriving Definitional Equality Encodings]
[4.1.1 Congruence Identities|.

[4.1.3 nRules|

4 CONTENTS
[4.2 Deriving Reduction Rule Encodings| 95

[Designing a Preliminary Translation| 105
[>.1 Theoretical Background| 106
[>.1.1 Comparing Theories| 106

H.1.2 Anp Intuitive lranslation Sketchlo o000 113

0.1.3 A More General Iranslation Frameworkl 118

6 Lean4lLess: Implementation Details| 127
[6.1 Implementation Frameworkl 127
[6.1.1 Adapting a Lean Kernel| 128

[6.2 Implementation Details|0 L. 130
6.3 Optimizations| 140

7 Results, Prospects and Conclusion| 151
[(.1 ‘Iranslation Results and [imitationsl. 151
[(.1.1 Leandless Translation: Resultsl 151

[7.1.2 Lean2dk: Preliminary Iranslation Results and Limitations| 152

(r.1.3 Lean4less Iranslation: Caveats and Limitations| 153

(7.2 'Translation Prospects|. Lo 156
[7.2.1 Addressing Lean4l.ess Scaling Difficulties with Auxiliary Constants| . 156

[7.2.2 Implications of a Verified Translation for Lean’s Metatheory| 158

[7.2.3 Extensionality in Lean| 161

Chapter 1

Introduction

This thesis concerns the topic of proof translation between proof assistants, specifically the
task of translating proofs expressed in the proof assistant Lean [27] to an intermediate
logical framework known as Dedukti [10]. In this first chapter, we will start with a broad
introduction to formal methods and our translation task, followed by a description of the
theories that we aim to translate between and a high-level overview of our translation plan.

1.1 Formal Methods and Proof Translation

The area of computer science known as “formal methods” broadly concerns the specification,
development, and verification of computer software/hardware, cyber-physical systems, and
formal mathematical theories. Formal methods often involve the use of programs and/or
well-established procedures to verify the correctness of some structured representation of
a particular system (be it a program, hardware description, formal mathematical proof,
etc.) according to a user-provided specification. This verification can be done through
automated means, user-directed proof steps, or a combination of the two. Formal methods
have applications particularly in the verification of correctness properties of safety-critical
software and hardware systems. More recently, formal methods have also seen renewed
interest for use in guiding and verifying machine learning systems through the rigorous
symbolic interpretation and formal verification of the input-output representations used by
artificial intelligence agents.

Proof Assistants

A particular application of formal methods is in the use of software tools to both verify and
guide the construction of formal proofs of mathematical theorems. Such tools are known as
“proof assistants” or “interactive theorem provers”, with most being based on the use of “ker-
nel” programs that verify that “proof terms” expressed in a particular syntax correctly prove
mathematical theorem statements. Proof assistant kernel implementations can be based on a
variety of theoretical foundations, with many of them using certain extensions of type theory
that exploit what is known as the Curry-Howard correspondence [24] between programming
language types and theorem statements. Starting from a base kernel implementation, many
proof assistants feature a stack of tooling to ease the process of formal mathematical proof,
including implicit arguments, interactive proof state inspection, library search tools, proof

6 CHAPTER 1. INTRODUCTION

automation tactics and meta-programming facilities, as well as more advanced forms of au-
tomation and proof search algorithms.

Proof assistants provide particular value to mathematicians in their ability to keep ex-
plicit track of proof obligations and the set of current assumptions/derived properties in an
evolving “proof state” during the course of proving a mathematical theorem. This allows
the user to essentially “offload” the responsibility keeping track of all of these details onto
the proof assistant, greatly reducing the chance of errors and providing rigorous correctness
requirements and guarantees that contribute highly to the trust that can be placed in the
truth of the formally proven mathematical theorem. Proof assistants also present some novel
opportunities in the area of automated reasoning and mathematical discovery, as the feed-
back that they provide can be used to guide the automated search for provable theorems
deriving from foundational axioms and mathematical objects.

Proof Translation: Motivations and Challenges

With the wide variety of existing proof assistants and independent formalization efforts
being made in different systems, interoperability becomes a major concern. It would be
highly desirable to avoid duplicating work between libraries that have been formalized in
different systems — ideally, as soon as a mathematical theory has been formalized in one
proof assistant, it should be possible to immediately export (i.e., translate) it to other systems
through fully automated means, in a way that not only preserves the computational content
of mathematical definitions and proofs, but also produces a translated output that can be
independently verified by the target system. Additionally, having reliable translation tools
between different systems would grant greater freedom of choice to users in terms of which
proof assistant they can use for their particular formalization task, providing them with the
confidence that their formal results will remain relevant beyond the scope of their chosen
system.

Beyond just these practical benefits, however, having a complete translation could also be
interesting from a proof-theoretical perspective. Firstly, translating a mathematical library
to another system, with the translation being successfully typechecked by that system’s in-
dependently implemented kernel, would afford more trust in the library’s formal results,
in addition to improving our confidence in the respective kernel implementations. On the
other hand, if a proof is deemed correct in the source system but has a translation that is
considered incorrect by the target system, this could highlight the existence of bugs in the
implementation of the kernels of either system (assuming the correctness of the translation
itself). Having a translation between different proof assistants that is additionally formally
verified would also open some interesting possibilities around formal meta-theoretical anal-
yses of the respective systems, as it may enable certain meta-theoretical results (such as
consistency) to be transferred between them.

The actual design and implementation of such translations between proof assistants is
often a highly involved and exacting task. While proof assistants often share in many aspects
of their theoretical foundations, they often also exhibit significant differences that unfortu-
nately make it difficult to share formal results between them. These differences may exist
on the syntactic level — that is, differences in the possible ways in which proof terms and
mathematical statements and definitions may be formed, according to the low-level program
syntax used by the proof assistant — and also at the level of the particular theories underlying
kernel implementations. These theories may be categorically distinct — for instance, proof

1.1. FORMAL METHODS AND PROOF TRANSLATION 7

assistants may be based on dependent type theory (for instance, the Rocq [31] proof assis-
tant), set theory (for instance, Mizar [42]), higher-order logic (for instance, Isabelle/HOL
[28]), and a number of other possible theoretical foundations (and combinations thereof).
Such fundamental differences obviously greatly hinder interoperability between these sys-
tems. However, even amongst theories with closely aligned foundations, differences may
exist that make the task of exporting proofs between systems highly non-trival.

In order to implement a correct translation between systems, we need to consider all
of the differences between them and design a translation that “reconciles” them in some
way. In many cases, there are similar features between systems that can be used to emulate
one another to some extent. In other cases, the differences between the systems are so
great that a complete translation is not possible (or, only possible with the addition of
certain axioms or additional kernel features in the target system). Such a case can arise
in particular when systems fundamentally differ in their expressive power, with one system
able to prove properties that the other cannot (and vice versa). As such, translation should
only be attempted between “compatible” systems, with a theoretical analysis of translation
feasibility (or, one that identifies a subset of feasibly translatable proofs from the source
system) preceding the actual design and implementation of a translation.

Our Task: Translating from Lean to Dedukti

This thesis describes the translation from the proof assistant Lean to the Dedukti logical
framework, with the eventual goal of enabling export from Dedukti of these translated proofs
to several different proof assistants. Lean [27] is a proof assistant developed by the Lean
FRO and designed for formalizing general mathematics, with a large and quickly growing
library of formal mathematics known as Mathlib [38|. Lean features a rich standard library,
along with extensive tooling for user interactivity, proof automation, and metaprogramming.
Lean has become especially popular amongst professional mathematicians, with several ad-
vanced /fundamental theoretical results in mathematics having been formalized in Lean in
recent years.

Dedukti [10] is a logical framework developed specifically for proof system interoperability
with a minimal type theory that is based on the AII calculus with rewrite rules. Dedukti
allows for the definition of various rewrite system encodings within it corresponding to various
different type theories, with translation from one proof assistant to another via Dedukti
generally taking the following three steps: first, proofs are translated to Dedukti via a
translation from the source system to Dedukti, assuming some encoding of the source type
theory within Dedukti. Then, translation is performed from the source theory encoding
to the target theory encoding within Dedukti. Finally, the translated proofs in the target
theory’s encoding are exported from Dedukti to the target systemﬂ

This centralized approach has benefits over directly translating between the different sys-
tems as it greatly cuts down on the number of translations that need to be implemented, as
we can focus solely on translating each system to and from Dedukti. This is preferable to
the approach of implementing a translation between every possible pair of systems, which
would involve a quadratic number of translations. It is also better than the approach of
implementing a linear chain of translations, which would accumulate large overheads as we
translate across multiple systems. While our approach still requires us to consider the trans-

'Some existing export tools have been implemented from Dedukti to PVS [36], Matita [3], Rocq [31],
OpenTheory [25] 40], and Agda |11} |16]

8 CHAPTER 1. INTRODUCTION

lation between different theory encodings within Dedukti itself, this is attenuated somewhat
(relative to the direct translation approach) thanks to the fact that we are working with a
single framework and a unified syntax. Additionally, general tools for translating between
different Dedukti theories (following, for instance, recent work by Traversié [41]) can greatly
reduce this burden wherever they are applicable.

Both Lean and Dedukti enable the typechecking of proofs through the propositions-
as-types principle, and they share some type-theoretic foundations, both being based on
extensions of Church’s simply typed A-calculus with dependent function types. However,
their theories differ in a number of ways that we will have to account for when defining
our translation. Below, we will provide a mostly complete presentation of both Lean and
Dedukti’s type theories that will serve as a useful reference to us as we go about defining
our translation from Lean to Dedukti in the later chapters.

1.2 Lean’s Type Theory

Let’s start with a description of Lean, the source theory of our translation. Lean’s type theory
takes closely after that of the Rocq proof assistant [31], being based based on the Calculus of
Inductive Constructions with an infinite universe hierarchy and an impredicative universe of
propositional types. However, it has a number of unique features of its own, most of which
serve as user conveniences that enable it to be practical for large-scale formalizations. Let’s
lay out a full formal presentation of Lean’s type theory below. Our presentation below will
be quite similar to that of Carneiro [13]|, who provided the first formal description of Lean’s
type theory w.r.t. the implementation of the Lean 3 kernel]

The Calculus of Constructions with Inductive Types

Lean’s type theory is based on the Calculus of Inductive Constructions (CIC) [30], which is
a theory that allows for general dependent types and the declaration of expressive inductive
types representing mathematical objects, along with their associated elimination principles.
CIC is based on the Calculus of Constructions, which enables the representation of higher-
order intuitionistic logic via the “propositions-as-types” principle, as was first described by
Coquand and Huet [14].

Core to CIC is the use of dependent types, which allows function types to have codomains
with dependencies on previously bound domain variables. For instance, if we have a type
Vec : Type -+ Nat = Type corresponding to the type of a list with a specified number of
elements of a specified type, we could describe the following function type:

def duplicate : {T : Type} = (n : Nat) = T + Vec T n := ...

whose output type Vec T n depends on previously bound domain variables T and n. CIC
is made usable as a system for formal proof through the “propositions-as-types” principle
(also known as the Curry-Howard correspondence), in which types belonging to a designated
propositional type universe (referred to in Lean as Prop or Sort 0) can be interpreted as
logical propositions, with terms inhabiting these types being interpretable as proofs. For
instance, we can prove that any proposition implies itself as follows:

2The most recent version of Lean, Lean 4, has a kernel with a few additional features which we will have
to account for in our translation — namely, those of struct-n, struct-like reduction, and unit-.

1.2. LEAN’S TYPE THEORY 9

theorem tauto (P : Prop) : P + P := fun p => p

We provide the proof as a A-function which can be thought of as a Prop-specific identity

function, taking in a proof of P and returning that same proof. The function type P + P,
which lives in Prop, can be corresponded to an implication, with a proof of this implication
corresponding to a A-abstraction. This interpretation of types as propositions and terms as
proofs is central to the use of CIC as a system of formal proof.

Inductive Types

Lean’s rich expressivity can largely be attributed to its support for the declaration of user-
defined “inductive types”, which enable the definition of mathematical objects as specific
Lean types. These inductive types are assigned a set of “constructors” that can be used to
construct instances of the inductive type. For instance, the natural numbers in Lean are
defined as follows:

inductive Nat where
| zero : Nat
| succ (n : Nat) : Nat

Here, the constructor Nat.zero represents the natural number zero, and the recursive con-
structor Nat.succ represents the successor of another natural number (with the number
one being represented as Nat.succ Nat.zero). These inductive types generate associated
elimination symbols, referred to in Lean as “recursors”, that enable the definition of functions
that operate on the contents of inductive type constructions. For instance, Lean generates
the following recursor for Nat:

-- Nat.rec.{u} {motive : Nat -+ Sort u}

-- (zero : motive Nat.zero) (succ : (n : Nat) -+ motive n + motive n.succ)
-- (t : Nat) : motive t

#check Nat.rec

This recursor can be used to define, for instance, an addition function:

def Nat.add (n m : Nat) : Nat :=
Nat.rec n (fun _ prec => Nat.succ prec) m

If we instantiate the recursor’s motive argument with some predicate P : Nat -+ Prop, this
recursor corresponds to the inductive principle on natural numbers:

axiom P : Nat -+ Prop
-- Nat.rec : P Nat.zero + ((n : Nat) =+ (ih : P n) =+ P n.succ) + (t : Nat) =+ P t
#check Nat.rec (motive := P)

The type above indicates that to prove that P n holds for all Nat instances n, we must
show that it holds in the Nat.zero case and the Nat.succ case, where the successor case
is provided with the inductive hypothesis ih.

Inductive types can also have parameters and indices, which are used to define param-
eterized “families” of inductive types. Consider, for instance, the following inductive type
declaration corresponding to the type Vec shown above:

10 CHAPTER 1. INTRODUCTION

inductive Vec (T : Type) : Nat - Type where
| nil : Vec T Nat.zero
| cons : (n : Nat) -+ Vec Tn =+ T + Vec T (Nat.succ n)

Here, the inductive type constant Vec itself (a.k.a., the type constructor of the inductive
type) takes one parameter for the type of the elements of the vector, and one index for the
number of elements in the vector. The difference between parameters and indices is that
parameters are specified as the initial arguments to the constructors, whereas indices are
fully determined by the constructor itself.

Vec has two constructors, Vec.nil for declaring an empty vector and Vec.cons for
appending an element to the end of a vector. Vec.cons takes another instance of Vec as
one of its arguments, making Vec what we call a “recursive” inductive type. Note that the
output type of a constructor’s function type must be the inductive type we are currently
declaring. There are also some additional restrictions placed on the form of constructor
function types (e.g. the positivity requirement), though we do not cover them herdﬂ

Lean also allows for the definition of more complex inductive types, such as mutual
inductive types, which is a generalization of recursive inductive types where one inductive
type is defined in terms of a second inductive type, which is in turn defined in terms of the
first one. For instance, the following mutual inductive types encode the property of a natural
number being even or odd:

mutual
inductive Even : Nat -+ Prop where
| zero : Even Nat.zero
| succ : {n : Nat} - 0dd n - Even (Nat.succ n)

inductive 0dd : Nat - Prop where
| succ : {n : Nat} -+ Even n - 0dd (Nat.succ n)
end

Term and Type Context Syntax

Lean terms are taken from the following grammar:

S1, = t where
t:::x]c.{gl,...,ﬁn} | Sort g‘tl (2 | fun ($Zt1) => {9 ‘ (l‘itl) -+ t2|
let (z:A) == v in b |t
Ci=wu|z|s{|max {4 {5 | imax {1 (o
where 1 € N,z € X, u € U, and ¢ € C, with X denoting a set of bound variable names,

U being a set of universe level parameter symbols, and C denoting a set of constant names
(with X', U, and C disjoint). A Lean term can either be a bound variable reference z, a

level-instantiated constant reference c.{/1,...,¢,}, a type universe, a.k.a. “sort” Sort ¢, an
application ¢ to, a A-function fun (z : t;) => t9, a dependent function type (z : t1) = t2, a let
binding, a.k.a. “local definition” let (z: A) := v in b, or a structure projection expression

t.i. Universe level expressions are taken from the grammar ¢, and can be a universe level

3See here for the exact specifications on the declaration of inductive types in Lean:
https://lean-lang.org/doc/reference/latest/The-Type-System/Inductive-Types/

https://lean-lang.org/doc/reference/latest/The-Type-System/Inductive-Types/

1.2. LEAN’S TYPE THEORY 11

parameter reference u, the zero universe level z, the successor of some other universe level
s ¢, the maximum of two universe levels max ¢, {5, or the impredicative maximum of two
universe levels imax /1 /5. A formal interpretation of universe level constructions is provided
in [Section 1.2.2

In our presentation of Lean’s type theory, we will also make use of a grammar for typing
contexts, denoted by the symbol A, defined as follows:

C1, = A where
A= (%)
= (Ty;Tp)

Yu=0] (3 00)
Iy:=0] Ty, uw)
L= | Tp,x:t)| (Br,x:t; =1s)

A Lean typing context consists of two components: a global typing context X, and a local
typing context I'. The global context is a list of constant declarations, with the symbol o¢
representing the syntax category of constant declarations. A Lean constant may be declared
an inductive type, definition, theorem, axiom, or quotient type. For simplicity’s sake, we do
not provide a fully formal description of the constant declaration grammar here. The local
context I' consists of a universe level context 'y, together with a bound variable context I'g.
The universe level context is simply a list of named universe level parameters that can be
introduced by constant declarations, while the bound variable context is a list of variables
along with their associated types (in the case of a bound variable being introduced by a
A-function or dependent function type), and possibly a value as well (in the case of a bound
variable being introduced by a let-binding). For some typing context A = (X; (T'y; ')),
we will use the shorthand A,z : T to mean (X; (I'y; (I'p,x : T))), as well as the shorthand
A,z : T = v to mean (3; (Iy; (I'p,z : T := v))), to append binders to the local context.
We will also use the shorthand notation ¢, A to mean ((c¢ :: ¥);T") (where ¢ :: ¥ indicates
prepending c to the list of constant declarations).

1.2.1 Type Inference Rules

To describe Lean’s type theory, we will use the syntax A + t : T as our type inference
judgment, read as “term ¢ has type T in typing context A”. The notation t[a/x] denotes the
substitution of the bound variable z in ¢ by the value a. The full set of type inference rules
in Lean are as follows:

AFf:(x:A) B AFe:A . = .
fi(.) app| AFABisort ¢ AFA=B Abt:A o\,
AF fe: Ble/z] AFt:B
AFA:Sort ¢ Ax:AkFe:B AFA:Sort { A,x:AF B:Sort ¢
[LAM] [ALL]
Ajz:AbF fun (z:A) =>e:(x:A) B AF (z:A) - B:Sort (imax ¢ (')
AFA:Sort ¢ AkFe:A Ax:A=ekb:B
[LET]
Al let (x:A) = einb: B [z/e]
AFA:Sort £
Al Sort ¢ : Sort (s ¢) [SORT] Az ALz A [VAR]

S structure-like AF¢:Sp) ... p, AFSmk:(py:P)=...2(pn: Py) (a1 A1) .. 2 (am : Ap)
Abti: A [po/py, oo, pa/Dl, ar/tl, o aioq /(i — 1))

[PROJ]

12 CHAPTER 1. INTRODUCTION

The rule [APP| describes the typing of applications, whose type is determined as an
instantiation of the possibly dependent codomain type of the application head’s function
type with the application argument. The rule [LAM| determines the type of a A-function,
whose type is a function type whose domain is the annotated binder type of the A\-function,
and whose codomain is the inferred type of the A-function body. The rule [ALL| states
that a function type inhabits a type universe whose index is the imax of the domain and
codomain universe indices (the semantics of imax are described below). The rule [LET]
concerns the typing of let-bindings, which are typed as the inferred type of the body of
the let-binding, with the let-bound variable instantiated with the bound value. The rule
[PROJ]| defines the typing of projections, applied to terms of structure-like types (defined
below). The type of a projection is the type of the field of the unique structure constructor
at the specified projection index, with the parameters and previous field values instantiated
within it according to the inferred type of the structure term and projections of the previous
fields. The rule [SORT] expresses Lean’s infinite universe hierarchy, in which each sort is
typed within its successor sort. The bottommost sort, Sort 0, abbreviated Prop, represents
propositional types (“propositions” for short), with higher-level sorts being used for more
“standard” types representing mathematical objects, as well as for higher-order function
types. The need for such an infinite universe hierarchy can be attributed to Russell’s paradox
[32], a result from set theory which demonstrates how inconsistencies can arise from circular
set membership ruleﬁ

Type Conversion and Definitional Equality

Lastly, Lean’s [CONV]| rule expands the class of types that a term could feasibly have by
allowing a term to type as any type that can be identified with its normally inferred typeE]
according to Lean’s “definitional equality” judgment. We use the notation A Ft = s to
denote this judgment, stating that the terms ¢ and s are considered definitionally equal in
context A.

The rule [CONV] is quite powerful, as it enables a derivation to effectively “swap out”
the normally inferred type of a term with another one, as long as it can determine that
the new type is equal to the old one according to some externally defined (and possibly
extensible) judgment allowing for identities that extend beyond just syntactic equivalence.
This is particularly relevant for rules where certain typings are enforced, allowing them to
be used more broadly, thus greatly improving the expressive capability of the type system
and allowing more terms to be typeable.

For instance, recall the rule [APP]:

AFf:(z:A) B AFe:A

[APP]
AF fe:Ble/z]

This rule requires the function domain type to match the type of the argument, which is
enforced in the rule by using the same symbol A for both types. Making use of [CONV],

4More directly applicable to Lean, there is a version of Russell’s paradox adapted for type theory that is
known as Girard’s Paradox [20], a Lean formalization of which can be found here:
https://leanprover-community.github.io/mathlib4_docs/Counterexamples/Girard.html

®That is, the typing that can be derived for the term without any top-level uses of the rule [CONV].

https://leanprover-community.github.io/mathlib4_docs/Counterexamples/Girard.html

1.2. LEAN’S TYPE THEORY 13

however, we can relax this requirement, deriving the following equivalent rule:
AFf:T ArT=(@x:A) B Akbe:U AFU=A
AF fe: Ble/z

[APP|

Here, we introduce a new type symbol T' that we assert to be definitionally equal to (z :
A) = B, as well as U, that we assert to be definitionally equal to A. We can see that this
new set of premises allows us to derive the original ones via [CONV], which then allows us
to prove the same typing via [APP|:

AFf:T AFT=@:A)>B Are:U A-U=A
AFf:(z:A) - B AFe: A
AF fe: Ble/z]

In general, thanks to [CONV]| we can always replace a premise of the form A ¢ : T with
the premises A+t :T', AFT =T'. For instance, the following rule is equivalent to [ALLJ:

AFA:T ArT=Sort ¢ Ax:A-B:U Ajz:AFU=Sort
AF(x:A)~ B:Sort (imax (/()

[ALL’|
[CONV] is especially useful when it comes to user-provided type annotations, e.g. those
appearing in the rule [LET|, which we can equivalently state as:

AFA:T AFT=Sortl{ AtFe:U AFU=A Ajz:A=etFb:B
AF let (x:A) = ein b: B [x/e]

[LET']

Here, we have relaxed the premise typing requirement on the value expression e to allow
for any type definitionally equal to the annotated type. This affords the user of the proof
assistant much more freedom in how they posit the type of the let value, as it is some-
times the case that types that are automatically inferred by type inference routines have
large and complex forms, while being definitionally equivalent to more natural and intuitive
representations that would be expressed by a user.

So, as we can see from the [CONV]|-derived rules above, the presence of [CONV] in our
type theory doesn’t just allow for alternate typings of fixed terms — it also greatly expands the
class of terms which are typable in our theory to begin with, allowing for a more expressive
type theory that makes for more convenient mathematical formalization. Of course, the
extent of this additional expressivity is highly dependent on the specifics of the definitional
equality judgment, which we describe below.

1.2.2 Definitional Equality Rules

The particular rules constituting Lean’s definitional equality judgment are as follows:

AFt=s

—, |RFL SYMM
Arizy R STIE v
AFf=f Ara=d AFA=A Az:Abe=¢
[CGR-APP] [CGR-LAM]
At fa=fd Al fun (z:A) => e=fun (z: A) =>¢
AFA=A Az:A-B=D Abt=s
[CGR-ALL] —————— [CGR-PROJ]
AF(z:A) - B=(x:4)~ B AFti=si

14 CHAPTER 1. INTRODUCTION

L=ty o byl . SN
— [CGR-CONST] [CGR-SORT]
AFCA{l,.. . y=C{d,... .0} At Sort £ = Sort ('
AF P:Prop AbFpqg:P Pl [FUN-ETA]
- N\ = o N- £
AFp=gq AF (fun (z:A)=>ezx)=e
S struct-like AbFt:Sp ... p, AFtl=a; ... AFtm=a, [ETAS|
AFt=Smkp; ... ppay ... an
U unit-like Akt s:U [UNTT] AFt~*t ARt =5 [RED)

AFt=s AFt=s

Each rule also implicitly carries an additional premise requiring the well-typedness of the
terms in the left- and right-hand sides of the conclusion judgment; for the sake of brevity,
we omit these premises in our presentation of the rules above. The rule [RFL| ensures that
the definitional equality relation is reflexive, while [SYMM] ensures that it is symmetric
(enabling the asymmetric definitional equality rules to apply in both directions). The rules
[CGR-APP|, |[CGR-LAM]|, [CGR-ALL|, and [CGR-PROJ| are “congruence identities” that
allow two terms with the same root syntax to be identified on basis of the definitional equality
of their corresponding subterms.

The Universe Level Equality Judgment

The congruence identities [CGR-CONST| and [CGR-SORT] are defined using a judgment
for the equivalence of universe level terms, which we denote using the syntax ¢ =~ ¢

L=ty o Uyl (=l
|[CGR-CONST] X
AFCA{l,. ...ty =C{l,.... 0} A F Sort ¢ = Sort /

[CGR-SORT)

This universe level judgment is defined in terms of an interpretation function eval, (¢), where
o :U — N is a “universe level parameter instantiation” function that assigns each universe
level parameter to a natural number. The interpretation function is defined as follows:

eval,(u) = o(u)
eval,(z) =0
eval,(s () =eval,({) +1

)
) = max(eval, (), eval,(¢))
0 eval,(¢) =0

max(eval,(f),eval,(¢)) otherwise

eval,(max ¢ ¢

eval,(imax ((') = {

The universe level equivalence relation asserts that two universe level expression evaluate to
the same number under all possible universe level parameter instantiations o, making them
“semantically equivalent”

(= < Vo,eval,({) =eval,({)

As one would expect, the rules [CGR-CONST] and [CGR-SORT] establish definitional equal-
ity between level-instantiated constant references and sorts based on the semantic equivalence
of their corresponding pairs of universe level expressions. The [CGR-SORT] rule in particu-
lar, in combination with the rules [ALL] and [CONV], is responsible for the impredicativity
of Lean’s Prop universe. We can see this in the typing A - (P : Prop) = P~ P : Prop,

1.2. LEAN’S TYPE THEORY 15

as this function type is able to type within Prop despite having quantified over Prop. Di-
rectly applying [ALL], we obtain A + (P : Prop) = P~ P : Sort imax (s z) (imax z z),

and we can also show that imax (s z) (imax z z) ~ z, from which it follows by |[CGR-
SORT]| that A F Sort imax (s z) (imax z z) = Prop, and lastly from [CONV] that

A (P:Prop) »= P~ P: Prop.

Proof Irrelevance

The rule [PI], referred to as “proof irrelevance”, enables the kernel to ignore the computational
content of proofs when comparing terms, only concerning itself with the equality of their
propositional types:

AFP:Prop AbFp,q:P
AFp=gq

[PT]

[PI] can be justified using Lean’s propositional extensionality axiom, which states that any
two propositions that are logically equivalent are also propositionally equal:

structure Iff (a b : Prop) : Prop where
intro ::
mp : a-=+b>b
mpr : b =+ a

axiom propext {P Q : Prop} : Iff P Q + P = Q

We can use propext to prove that any provable proposition is propositionally equal to the
proposition True:

inductive True : Prop where
| intro : True
theorem propEqTrue (P : Prop) (p : P) : P = True := by
apply propext
apply Iff.intro <;> intro
trivial
exact p

This lemma can then be used to prove a propositional version of [PI|, by first replacing the
propositional type of the proof terms with True, and then performing elimination on the
proof terms to convert them both to the unique constructor True.intro:

theorem prflrrel (P : Prop) (pq : P) : p=4q := by

have this := propEqTrue P p -- this : P = True

subst this

-- elimnates "p : True’ and "q : True’ to “True.intro’
cases p

cases q

rfl

Proof irrelevance is useful, for example, in establishing the definitional equality of predi-
cate subtype instances with equal values, but differing membership proofs. Subtypes in Lean
can be defined as a parametric inductive type as follows:

16 CHAPTER 1. INTRODUCTION

inductive Subtype {A : Type} (p : A =+ Prop) where
| mk : (val : A) = (prf : p val) : Subtype p

Suppose that we use this to define a subtype for natural numbers less than five:

def NatLT5 : Type := Subtype (fun n => n < 5)
def NatLT5.mk (n : Nat) (p : n < 5) : NatLTh :=
@Subtype.mk Nat (fun n => n < 5) n p

Now, suppose we have two syntactically distinct proofs pl p2 : 3 < 5. Proof irrelevance

gives us a definitional equality between NatLT5.mk 3 pl and NatLT5.mk 3 p2, as one would
expect, since when we consider the equality of these subtype constructions, all that we care
about is the equality of their underlying values.

Forms of proof irrelevance are supported in a number of other proof assistants. Until
recently, the use of proof irrelevance in Rocq had to be made explicit with an axiomﬂ
with, optional support for definitional proof irrelevance having recently been added with
the SProp type[]. Agda supports user-annotated irrelevant function arguments and struct
ﬁeldsﬂ in addition to a proof-irrelevant type universe Prop (analogous to Rocq’s SProp). F*
erases the details of SMT solver-generated equality proofs [37]. The PVS proof assistant |36]
features a special case of proof irrelevance in identifying predicate subtype constructions.

Function 7

Lean’s definitional equality judgment features the rule [FUN-ETA] rule for “function 7”,
which equates a term of a function type with a A-function whose body is the term applied
to the abstracted variable:

AF (fun (x: A) =>ex)=e [FUN-ETA]

We refer to fun (x: A) => f x as the “n-expansion” of f.

This equality is justified through the “function extensionality” principle, which states
that two functions are equal if they are equal under every possible application. In Lean,
function extensionality is provided by the theorem funext, which is proven through the use
of quotient types:

theorem funext {A : Sort u} {B : A + Sort v {f g : (x : A) = B x}
(h: (x : Nat) »fx=gx) :f=g:= ...

From this axiom, it is clear that the definitional equality encoded by [FUN-ETA] holds
propositionally, since if we instantiate g with fun (z: A) => f x, the premise h is satisfied
definitionally via S-reduction (described below).

Struct-n

The rule [ETA-S| takes into account a characterization of certain “structure-like” inductive
types in Lean, abbreviated “structs”. In other proof assistants, e.g. Rocq, these are referred

6See https://rocq-prover.org/doc/V9.0.0/stdlib/Stdlib.Logic.ProofIrrelevance.html.
"See https://rocq-prover.org/doc/V9.0.0/refman/addendum/sprop.html.
8See https://agda.readthedocs.io/en/v2.5.4/language/irrelevance.html.

https://rocq-prover.org/doc/V9.0.0/stdlib/Stdlib.Logic.ProofIrrelevance.html
https://rocq-prover.org/doc/V9.0.0/refman/addendum/sprop.html
https://agda.readthedocs.io/en/v2.5.4/language/irrelevance.html

1.2. LEAN’S TYPE THEORY 17

to as “record types”ﬂ Unlike Rocq, however, Lean does not distinguish between struct-

like inductive types and normal inductive types at the syntactic level. Rather, it is the
responsibility of the typechecker to determine whether a struct-specific rule is applicable by
investigating the form of the inductive type in question.

For an inductive type in Lean to be considered struct-like, it must have a single con-
structor and no inductive type indices. For instance, consider the following structure type
declaration:

structure Point where (x : Nat) (y : Nat)

Note that the structure syntax is simply syntactic sugar that Lean’s elaborator expands
to the following, including definitions corresponding to each of the projections:

inductive Point where

| mk : Nat -+ Nat - Point

def Point.x (p : Point) : Nat := p.1
def Point.y (p : Point) : Nat := p.2

Essentially, structs can be thought of as simple collections of objects of certain (possibly
dependent) types. The fact that they lack indices means that their types cannot depend
on the particular values provided for their fields, which allows for a powerful elimination
principle based upon the property that any term of a struct-like type can be shown to be
equivalent to a constructor application, as demonstrated in the following proof:

theorem structEtaPoint (p : Point) : Point.mk p.x p.y = p :=

Point.rec
(fun x y =>
rfl
-- "~ proof of ‘Point.mk (Point.mk z y).z (Point.mk = y).y = Point.mk = y’
) P

Because this is quite a useful principle to work with when using struct-like types in Lean,
Lean’s kernel promotes this propositional equality to a definitional one. Given a struct-like
inductive type S with n parameters m fields, a constructor mk and aterm A=t : Spy ... pn,
we have the following definitional equality:

S struct-like AbFt:Sp; ... pn
|[ETA-S’|
AFt=Smkp; ... p, t.1 ... tm

We refer to the expression Smk p; ... p, t.1 ... t.m as the “struct-n-expansion” of the
term t. In words, this equality says that the kernel can identify a term of struct type with a
particular explicit construction using the unique struct constructor, with the type parameters
provided by the inferred struct type and the fields values extracted from the term via their
corresponding projections. As we have demonstrated by example in structEtaPoint above,
these must always be equal for any explicit construction taking the place of ¢, as in this case
the projections on the RHS reduce, making the LHS and RHS syntactically equal.

Note that the rule [ETA-S’| is actually a bit less general than the check that is actually
implemented by the Lean kernel, corresponding to the rule |[ETA-S]:

S struct-like AFt:Sp ... p, AFtl=a ... AFtm=a,
AFt=Smkp; ... ppar ... an

[ETA-S|

9See https://rocq-prover.org/doc/master/refman/language/core/records.html.

https://rocq-prover.org/doc/master/refman/language/core/records.html

18 CHAPTER 1. INTRODUCTION

This rule is more general than [ETA-S’|, requiring that each of the constructor field arguments
can be identified with a corresponding projection of the structure term, and it can also be
shown to hold propositionally for any struct-like type.

Unit 7

The rule [UNIT] takes into account a special distinction that Lean makes for so-called “unit-
like” inductive types, which are inductive types with a single constructor without any fields.
For instance, the Lean standard library provides the following universe-polymorphic unit

type:

inductive PUnit : Sort u where
| unit : PUnit

Such types are useful especially with type-parameterized inductive types, where they can be
used as “trivial” instantiations of these type parameterd'®l For such unit-like types, Lean
enables a special definitional equality rule that allows any two instances of the same unit
type to be identified, giving us the rule [UNIT]:

U unit-like AFt,s:U

[UNIT]
AFt=s

Similarly to struct-n, this rule can be justified as it corresponds to a propositional equality
that can be shown by elimination on unit-like types.

1.2.3 The Reduction Relation

Lastly, we have the rule [RED], which allows a term ¢ to be identified with a term s that is
definitionally equal to a reduced form of ¢:
Abt~*t ARt =s
AFt=s

[RED|

This rule introduces a new piece of notation A ¢ ~~* s, denoting the reflexive, transitive
closure of a single-step reduction relation A F+ ¢ ~» s. This relation is used to decide
equality between Lean terms through the (partial) computation of normal forms, which
greatly expands the set of identifiable terms as Lean lacks a rule for general transitivity of
definitional equality[l}

The reduction relation is defined by a set of “reduction rules”, a subset of which are shown
below:

’ AFt~s)
AtF (fun (z: A) => e) a ~ e[x/d] [BETA] A+ Clt] ~ Cls] [CTX]
A= (3;T) X contains C.{uy,...,u,}, defined with value v
[DELTA]

AFC{lL,. ...}~ vlun/lh, ... un /1]

S structure-like

RPROJ
AF(SmRpy ... Pp @1 ... G .. Q)i ~ 0y [|

19For instance, they can be used with monadic function type signatures to signify that the function lacks
a return value.

1n fact, we cannot have a theory for Lean exhibiting general transitivity, as it would render the theory
undecidable, as was shown by Carneiro [13].

1.2. LEAN’S TYPE THEORY 19

K K-like AFKmkp; ... ppo:Kpr oo paniy ... by AFt:Kmkpy ... pyip ...
Abt~ Kmkp ... p,
S struct-like AFt:Sp1 ... py

‘™ |KLR]

[R-ETA-S]
AbFt~ Smkp ... p,t.1 ... tm
A= (3;T) X quotient-declared
[QIND)
Al @Quot.ind Ar B p (@Quot.mk A r a)~pa

A= (%;T) X quotient-declared
AF eQuot.lift Ar B f h (0Quot.mk A7 a)~ fa

[QLIFT]

As in the definitional equality judgment, these reduction rules implicitly take as premises
the well-typedness of the LHS and RHS of the conclusion judgment.

The rule [BETA] corresponds to “(-reduction”, which is quite standard to many type-
theory based proof assistants. This rule allows an application of a A-function to a term
(known as a “f-redex”) to be reduced by substituting the application for the body of the
A-function and replacing the bound variable with the argument. The rule |[CTX]| enables the
reduction relation to apply between any two terms which contain subterms that directly[jz]
reduce to one another, where we use the notation C[t] to indicate the substitution of a
singular subterm hole in C' with the term ¢.

0-Reduction

The rule [DELTA] expresses “0-reduction”, otherwise known as “J-expansion”, which involves
expanding a previously defined constant to its body in the process of reduction:

A= (3;T') X contains C.{uy,...,u,}, defined with value v
A O.{ll, c. 7ln} ~ U[[Ul/ll, c. ,Un/lnﬂ

[DELTA]

While [DELTA] does not strictly expand the class of provable propositions, the use of de-
fined constant names allows terms to be reused in several different places without dupli-
cation. Strictly speaking, [DELTA] itself is only really useful for constants whose type is
not in Prop, as definitions corresponding to proofs (i.e., theorems) do not ever need to be
expanded, thanks to the rule [PI], which makes the actual content of proof terms irrelevant
for typechecking.

Projection Reduction

The rule [RPROJ| describes how structure type projections reduce whenever they are applied
to an explicitly constructed structure type instance, directly extracting the field from the
construction corresponding to the projection index:

S structure-like

RPROJ
AF(Smkpy ... PpGl ov QG oo Q).d ~> a; [|

For instance, recall our example Point struct from earlier. The term (Point.mk 1 2).1is
able to reduce immediately to 1 via [RPROJ]|, as the projection directly extracts the first
field from the Point.mk constructor application, without performing standard reduction via

12By “directly”, we mean to say that that some rule other than [CTX] is applied to the subterm (or,
equivalently, that reduction changes the function head of an n-ary application).

20 CHAPTER 1. INTRODUCTION

recursors (described below). Projection reduction has been implemented in the Lean kernel
as an important optimization, as structure types are very frequently used in larger-scale
formalizations.

K-Like Reduction

Lean also features a special reduction rule known as “K-like reduction” ([KLR] above), which
is based on the characterization of so-called “K-like” inductive types in Lean, which are
defined as inductive types that that live in Prop and have a single constructor without any
(non-parametric) arguments. Lean’s equality inductive type, recalled below, is an example
of such a K-like inductive type:

inductive Eq {A : Sort u} (a : A) : A - Prop where
| refl : Eq a a

This inductive type has two parameters, found to the left of the colon in the inductive type
signature: the polymorphic type A and the LHS element a : A. It also has an index, which
is the RHS element of the equality. In the particular case of K-like inductive types, where
constructors have no arguments, indices are effectively functions of the parameters.

Many proof assistants feature support for what is known as “Axiom K”, which states
that any proof of equality between identical termﬂ is propositionally equal to the unique
reflexive constructor for equality{™*}

theorem axiomK (p : t = t) : p = Eq.refl t := ...

It is equivalent to the notion of uniqueness of identity proofs (UIP), which allows for equating
any two proofs of the same equality type:

theorem UIP (pgq : t=8) : p=q = ...

This is a useful property, since it is often the case that there is more than one way to show a
given equality, while the equality type only has a single constructor, implying that the proofs
should (in principle) be the same. Both properties are trivially provable in Lean, as they are
a special case of proof irrelevance (as we can see in the use of the rfl proofs above).

Lean generalizes the axiom K as a reduction rule for any K-like inductive type. In general,
suppose we have a K-like type K with n parameters, m indices and the unique constructor
mk. We can express K-like reduction as the rule:

KKlke AFKmkpy ... pp:Kp1 oo Pty .. by AFt:Kmkpr ... Ppiy «.. im KLR|
Abt~ Knkpy ... pn

Note the requirement that the type of ¢ corresponds to the type of a constructor application
of the K-like inductive type. This is important for the subject reduction property, because
if this is not the case, then the reduction would not respect preservation of typing, with the
constructor application on the RHS having a different type than the LHS.

For example, the above rule applies to the equality type with n = 2, m = 1, K = Eq,

mk = Eq.refl, p; = Nat, po =0, and ¢; = 0, allowing any term t : 0 = 0 to be reduce

13Due to [CONV], it effectively applies up to definitional equality of the LHS and RHS.

4Despite being called an axiom, this property is provable using the eliminator for equality.

15With respect to a practical typechecker implementation, during reduction we must ensure that t is not
already an application of Eq.refl before applying [KLR] in order to avoid non-termination.

1.2. LEAN’S TYPE THEORY 21

to Eq.refl Nat 0. Note that K-like reduction is related to proof irrelevance, since ¢ and

mk p; ... p, are already definitionally equal in Lean by [PI] (as K-like inductive types must
live in Prop). However, as a reduction rule, it enables a more powerful elimination principle

on K-like inductive types. For instance, in the case of Eq, it enables the recursor to reduce
on any well-typed major premise argument, without needing an explicit construction:

theorem KLR (h : t = t) : Eq.rec refl h = refl := rfl

Here, the major premise is simply the variable h. This is a practically useful reduction be-
cause, for instance, it allows us to eliminate redundant casts around terms, since applications
of the explicit type conversion operator cast reduce to applications of Eq.rec:

def cast {A B : Sort ut} (h : A=B) (a : A) : B
theorem elimCast (T : Type) (t : T) (h : T =T) :
t =cast ht :=
-- 't and ‘cast h t° are defeq thanks to [KLR]
rfl

In reality, Lean’s kernel does not implement such a reduction rule in general when com-
puting the WHNF of terms of K-like types; instead, it only uses it on major premise argu-
ments of recursors in the course of reducing recursor applications, equivalent to the following
reduction rule:

K Klike AFKmkp; ... pn:Kp1 ... ppiy .. iy AFt:K O 7 ST
1ke mx pp Pn Y41 Pn 11 tm P1 Pn 1 ? [KLR—REC]
AFKrecp, ... pn [fi1 ...ipt~f

This rules specifies that we are able to apply recursor reduction on a K.mk application given
any well-typed major premise t. To apply it, the kernel has to verify the second premise of the
rule, which it does by inferring the type of ¢, using the parameter arguments to construct
a K rec application and checking that the index arguments match up with those of the
inferred type of this Constructionﬁ. While seemingly more limited in scope, this alternate
reduction rule is entirely sufficient, as it is only in the case of recursor reduction that an
application of [KLR] would make any difference in a judgment of definitional equality.

K-like reduction, in combination with Lean’s impredicative Prop universe, results in
non-termination of reduction, as shown by Abel and Coquand [1]. While its use in Lean has
proven to be quite successful, such a theoretical lack of strong normalization may be part
of the reason why very few other proof assistants support it. It does, however, exist to a
limited extent in the Rocq proof assistant, where it can be enabled with the “Definitional
UIP” ﬂagf_T] (this is not enabled by default to preserve certain theoretical properties, e.g.
normalization).

Struct-Like Reduction

Structure types in Lean impose a special reduction rule that is similar to the one for K-like
inductive types: in the same way that we can reduce a term of a well-indexed K-like inductive

16Note that for K-like inductive types, the fact that the unique constructor takes no non-parametric
arguments means that the index values are uniquely determined as a function of the parameters.
"https://rocq-prover.org/doc/V8.18.0/refman/addendum/sprop.html#definitional-uip.

https://rocq-prover.org/doc/V8.18.0/refman/addendum/sprop.html#definitional-uip

22 CHAPTER 1. INTRODUCTION

type to a constructor application for the purpose of recursor reduction, we can apply struct-»-
expansion to identify a term of structure type with the unique structure constructor applied
to the corresponding projections of the term, giving us the rule [R-ETA-S|:

S struct-like AFt:Sp ... pn
[R-ETA-S]
AFt~ Smkp; ... p,t.1 ... tm

As with [KLR], this rule is only really relevant for the reduction of recursor applications, with
the Lean kernel only actually ever applying this reduction to the major premise argument of
structure recursor applications. Therefore, [R-ETA-S| can be equivalently stated as follows:

S struct-like AFt:Sp ... p
AFSrecp, ...pp ft~ftl ...t

[R-ETA-S-REC]
m

Quotient Reduction

Lean features a special built-in polymorphic type, referred to as a “quotient”, that enables
the construction of terms that represent equivalence classes of a type under a specified
equivalence relation. Quotients types in Lean are constructed with the symbol Quot, with
quotient instances being constructed using the symbol Quot.mk. These symbols have the
following types:

#tcheck Quot

-- Quot.{u} {4 : Sort u} (r : 4 + 4 + Prop) : Sort u

#check Quot.mk

-- Quot.mk.{u} {4 : Sort u} (r : 4 + 4 + Prop) (a : 4) : Quot r

The quotient type @Quot A r corresponds to a type of equivalence classes of A under the
relation r, where two constructions Quot.mk r a and Quot.mk r a' are considered equiva-

lent if and only if a and a' are related by r. This is expressed as a propositional equivalence
by the axiom Quot.sound:

#tcheck Quot.sound
-- Quot.sound.{u} {4 : Sort u} {r : 4 + 4 + Prop} {a b : A} :
-- rab <+ Quot.mk r a = Quot.mk r b

Lean includes two special elimination symbols for quotient types. The first is Quot.ind,
which encodes the induction principle on quotient types:

#check Quot.ind
-- Quot.ind.{u} {4 : Sort u} {r : 4 + A + Prop} {B : Quot r + Prop},
-- ((a : 4) = B (Quot.mk r a)) : (q : Quot r) + B q

To allow for the definition of data-computing functions on quotient types, a function lifting
operator Quot.lift is also provided:

#check Quot.lift
-- Quot.lift.{u, v} : {4 : Sort u} + {r : 4 + 4 + Prop} + {B : Sort v} -+
-- (f:4-+B)~+((ab:4)+rabdb-~+fa=f>b)+ Quotr-+B

1.2. LEAN’S TYPE THEORY 23

Both of these functions have special reduction rules associated with them, that apply when
an explicit quotient construction is provided as the final argument. These can be expressed

as follows:
A= (%;T) X quotient-declared

AF 0Quot.ind Ar B p (6Quot.mk A r a)~pa
A= (3;T) ¥ quotient-declared
At @Quot.lift Ar B f h (6Quot.mk Ara)~ fa

[QIND

[QLIFT]

Recursor Reduction

For every inductive type that is defined, Lean generates “recursors” (a.k.a. eliminators) that
allow for defining functions/performing inductive proofs on terms of that inductive type. For
instance, the type Vec declared above has generates the following recursor:

#check Vec.rec

recursor Vec.rec.{u} : {T : Type} =+ {motive : (a : Nat) =+ Vec T a = Sort ul} -+
(nil : motive Nat.zero Vec.nil) -+ (cons : (n : Nat) = (v : Vec Tn) = (¢t : T) =
motive n v - motive n.succ (Vec.cons n v t)) -
{n : Nat} » (v : Vec T n) -+ motive n v

The motive argument describes the output type of the recursor application, which may
depend on the index and particular Vec instance that the recursor is applied to. The next
two arguments, nil and cons, are the “minor premises” of the recursor, which describe
how elimination is to be performed in the case of a Vec being constructed as Vec.nil or
Vec.cons. These are followed by an index argument n and a “major premise” t, which is
the Vec instance that is actually eliminated upon.

For every inductive type recursor, Lean generates a set of associated reduction rules, one
for each of the inductive type constructors. When a major premise is provided whose weak-
head normal form is a constructor application, the recursor is able to reduce, according to the
reduction rule that was defined for that constructor — this is referred to as recursor reduction,
a.k.a. t-reduction. For example, with our Vec inductive type, the recursor reduction rule for
Vec.nil simply reduces to the minor premise argument that corresponds to the Vec.nil
case:

example : QVec.rec T motive nil comns Vec.nil = nil := rfl
The recursor rule for Vec.cons is more complex:

example : QVec.rec T motive nil cons (Vec.cons n v t)
= cons v t (QVec.rec motive nil cons v) := rfl

This recursor rule applies the minor premise argument corresponding to the Vec.cons case
to the data arguments of the Vec.cons application, with the inductive hypothesis argument
being provided by a recursive call of the same recursor application, swapping in the recursive
argument for the major premise. In general, inductive hypothesis arguments are generated
for each recursive instance in the function type of the constructor.

This reduction is implemented in the kernel by applying a special function correspond-
ing to the reduction rule to the motive types, minor premises, and extracted constructor
arguments. The body of this function applies the minor premise corresponding to the major

24 CHAPTER 1. INTRODUCTION

premise constructor application to the extracted data arguments and recursive calls for each
of the inductive hypothesis arguments.

Recursor rules are also generated for the other categories of inductive types, like mutual
inductive types. For instance, the Even/0dd mutual inductive types shown earlier generate
the following recursors, where each recursor must be provided with elimination rules for both
mutually defined types:

-- Even.rec :

-- {mtv_e : (a : Nat) -+ Even a -+ Sort u}t + {mtv_o : (a : Nat) -+ 0dd o + Sort u} -
-- mtvu_e Nat.zero Even.zero -+

-- ({n : Nat} =+ (a : 0dd n) + mtv_o n a + mtv_e (Nat.succ n) (Even.succ n)) =

- ({n : Nat} + (a : Even n) = mtu_e n a <+ mtu_o (Nat.succ n) (0dd.succ n)) -

-- {a : Nat} -+ (t : Even a) -+ mtu_e a t

#print Even.rec

-- 0dd.rec :

-- {mtv_e : (a : Nat) -+ Even a -+ Sort u} + {mtv_o : (a : Nat) -+ 0dd o -+ Sort u} -+
-- mtvu_e Nat.zero Even.zero +

-- ((n : Nat) =+ (a : 0dd n) + mtv_o n a + mtv_e (Nat.succ n) (Even.succ n)) =

- ((n : Nat) + (a : Even n) - mtu_e n a <+ mtu_o (Nat.succ n) (0dd.succ n)) -

-- {a : Nat} »+ (t : 0dd a) + mtv_o a t

#print 0dd.rec

These recursors generate the following mutually referencing rules:

example : Even.rec z succ_e succ_o Even.zero = z := rfl
example : Even.rec z succ_e succ_o (Even.succ n)

= succ_e n (0dd.rec z succ_e succ_o n) := rfl
example : 0dd.rec z succ_e succ_o (0dd.succ n)

= succ_o n (Even.rec z succ_e succ_o n) := rfl

A formal rule characterizing the general form of recursor reduction in Lean was first
described by Carneiro [13|. However, the presentation is rather complex and requires the
use of new notation to formally describe inductive type/constructor declarations. As we will
see later in [Section 4.2 it turns out that we do not need to account for all of the specifics of
the theoretical structure of recursor reduction in Lean in defining our translation, as Lean
generates recursor rules that we can directly translate into rewrite rules. As such, we omit
from this thesis a full formal presentation recursor reduction in Lean.

1.3 Dedukti’s Type Theory

Dedukti’s type theory is much more minimal than Lean’s, being based on the All-calculus
modulo rewriting (AII/R). Its type theory is based on the AII calculus, which is a variant of
the simply typed A-calculus in which both types and terms can depend on terms, enabling
an encoding of first-order logic. The addition of rewrite rules to this theory enables a
representation of higher-order logic through the use of specialized symbols and associated

rewrite rules, for instance via a pure type system encoding (see [Section 2.2]).

1.3. DEDUKTI’'S TYPE THEORY 25

Term and Type Context Syntax

Dedukti terms are taken from the following grammar:

Spx = t where
tu=ux|c|Type |Kind |ty to | (z:t1) => ta | (x:t1) — &

where z € X and ¢ € C, with X denoting a set of bound variable names and C denoting a
set of declared symbol names. A Dedukti term can either be a variable or declared symbol
reference, a special type universe symbol Type or Kind, a A-function, or a dependent function
type expression. In presenting Dedukti’s type theory, we will also make use of a grammar
for typing contexts, denoted by the symbol A:

Cbk = A where
A= (3T
Y= (Xp; XR)
Ypu=()|(Ep,op)
Yr:u=0(0)](Xgr,0r)
L= (Xg,z:1t)

Similarly to Lean, a Dedukti typing context consists of two main components: a global

typing context >, and a local typing context I'. The global context contains a list of symbol

declarations > p and a set of rewrite rules Xz that together constitute a “rewrite system”

that will factor into Dedukti’s type conversion rule. The local context consists of a list of

named variable typings introduced in the course of constructing typing derivations for binder

terms. As we did for Lean, we will use the shorthand A,z : T to mean (3; (I',z : T)).
Symbol declarations and rewrite rules are taken from the following syntax:

opu=c : t.|defc : t.
OR '= i[}l,...,l'n] t1 — is.
A symbol declaration of the form ¢ : t. declares ¢ as a “static symbol” of type ¢t and a

declaration of the form def ¢ : t. declares c as a “defined symbol” of type t. Rewrite rules in
Dedukti consist of a set of “pattern variables”, a left-hand side (LHS) and a right-hand side
(RHS), where the LHS must be an application headed by a defined symbol, and any of the
pattern variables appearing in the RHS must also appear in the LHS, with the RHS having
the same type as the LHS@

For instance, we might declare the type of natural numbers in Dedukti as follows:

Nat : Type.
zero : Nat.
succ : Nat — Nat.

This corresponds to a standard Peano-style definition, where a natural number can either
be constructed as zero using the constructor zero, or as the successor of some other natural

8There are additional restrictions placed on the statement of rewrite rules in Dedukti, though these are
a bit more complex to state and not presented here.

26 CHAPTER 1. INTRODUCTION

number n using the constructor application succ n, Now, we can use rewrite rules to declare
a predecessor operator as follows:

def pred : Nat — Nat.
| pred zero < zero.

[n] pred (succ n) — n. (r)

Note that pred is declared as a defined symbol because we later define rewrite rules on it.

1.3.1 Type Inference Rules
The basic typing rules of A\II/R are as followﬂ

AF?AB:T AFTA=B AF7t: A AF? fi(z:A) - B AF7e: A
I EENCONY file:d) [APP]
AF’t:B AF? fe: Ble/x]

AF? A: Type VAR c declared in A with type T
Az:AFz: A) AF?ce: T
AF?A:Type Ax:AF"e: B AF"A:Type A,x:AF" B:Type

[LAM] [ALL]
Az:AF? (z:A)=>e:(z:A) - B AF? (z:A) — B:Type

A F? Type : Kind [TYPE] [CONST]

These rules closely resemble the corresponding rules from Lean’s theory, with a few key
differences no note. Firstly, the rule for typing universe sorts has been replaced by the rule
[TYPE] which simply types the symbol Type as Kind, with Kind itself being left untyped.
Secondly, the rules [LAM] and [ALL| are not able to quantify over types, as domain types
must themselves inhabit Type. Lastly, while the type conversion rule [CONV] is identical in
form to the type conversion rule in Lean, and serves the same purpose of expanding the set
of typeable terms, it uses a different definitional equality judgment, which we define below.

1.3.2 Definitional Equality Rules

Dedukti’s definitional equality judgment is defined more or less solely in terms of reduction
to syntactically equivalent forms. Let’s formally present this judgment, starting from a base
notion of reduction in Dedukti.

For some A = ((¥p;Xg);I"), we use the notation A F7 t<—}s to say that ¢ “head-
reduces” to s in a single step through the direct application of S-reduction or some rewrite
rule in X i. Precisely, it is characterized by the following two rules:

AF? ((z:A)=>e)a:T A [Z1,..., 2] 1 = r.inXr t=lar/x1, ..., an/z,]
BET
AF? ((x: A) => e) a=] e[z /a] |] AF? t=lrla /oy, ..., an/T,)

[RW]

The rule [BETA] corresponds to standard S-reduction, while the rule [RW] enables terms to
reduce based on syntactic matching with the LHS of rewrite rules, where pattern variables
may be replaced by arbitrary subterms, rewriting to the RHS with these same pattern
variables replaced with the same subterms. For instance, by the rewrite rule r; defined
above, we have for all terms n that pred (succ n) reduces to n.

¥For simplicity’s sake, we use the same rule labels for similar rules in different theories; it should always
be clear from the context which rule from which theory is being referred to.

1.3. DEDUKTI’'S TYPE THEORY 27

Extending this relation with with context closure, we obtain our single-step reduction
relation A 7 t <4 s, stating that some subterm of ¢ reduces to s in a single step, through
B-reducing or rewriting of one of its subterms. Formally, we can specify this relation with
the following rule, which is analogous to the rule [CTX] from Lean’s type theory:

AI—‘—>t<—>gs

[CTX]
AF7 Clt) =5 Cls]

Let’s also introduce the relation A F~ t<—>; s to indicate that ¢ reduces to s after some
number of steps (zero or more). Formally, we have the following three rules:

Al—%t<—>55
*, |RED _REFL| ———— |RED_UNIT
AF7t—=pt [—] ARty s [_ |
Al—%t;);s AF? s—=3u
. [RED TRANS]
Al—‘%t<—>ﬁu

Verbally, we simply say that “¢ reduces to s” in context A if A+~ t(—>; s.
We can now define Dedukti’s equality judgment, which is based on the syntactic equiva-
lence of reduced forms:

Al—gt‘—ﬁ;ul A 3<—>;u2 AF
AFt=s

™ pEQ)

The judgment A F7 ¢ =g s simply checks for the syntactic equality of ¢ and $}

AFt =gt [SYN]

Dedukti has also been extended for support for function-n, which can be enabled with a
special command-line flag, amounting to the following rule:

AF"f:(z:A) - B

[FUN-ETA]
AF ((x:A)=>fz)=sf

Lastly, we add an important condition to typing requiring that our typing context A is
confluent. To state this, we use the judgment conf(A), defined by the following rule:

Vit (AF? sopti AAFT sopty) = (Gu, AF7 tr =5 u ANAFT ty—ju)
conf(A)

[CONF]

In words, the confluence property ensures that any pair of terms that are arrived at by apply-
ing rewrite rules/S-reduction to an initial term in different orders/locations are eventually
able to be “joined” by continuing to apply reduction to both terms. In general, determining
the confluence of a given rewrite system is an undecidable problem, however it is a critical
property to ensure that the rewrite system defined by our global typing context is “well-
behaved,” enabling important theoretical properties to hold. In particular, it gives us the
following uniqueness of normal forms property:

2ONote that this rule implicitly accounts for syntactic equivalence up to a-equivalence (that is, renaming
of variables bound by A-functions or dependent function type expressions).

28 CHAPTER 1. INTRODUCTION

Lemma 1.3.1 (Uniqueness of Normal Forms). If A F7 ¢ <N uy and A F7 ¢ <N uy, then
A U1 =s Us.

Here, we use the notation A F7 ¢ <—>;N s to indicate that ¢ reduces to s after some number
of steps, with s being in normal form — that is, ¢ “normalizes to” s. Formally, A -7 ¢ <—>;N s
means that A F~ t~’—>; s with A 7 NF(s), where we define the notation A 7 NF(¢) to
indicate that a term is in normal form, meaning that neither g-reduction nor any rewrite
rules can apply to it. @ From the uniqueness of normal forms property, we can also derive
the following, which will be useful to us in showing the correctness of our translation:

Lemma 1.3.2. f AF7t=s, with AF7 ¢ <—>;N t'and AF" s <—>ZN s, then A F7 ¢/ =g ¢

That is, any two definitionally equal terms have syntactically identical normal forms.

Because confluence is such an important property, we implicitly add the premise conf(A)
to all of our typing rules defined earlier, making our typing judgment as a whole require a
confluent typing context, which will ease later analyses. Note, however, that this condition
makes our Dedukti theory much more restrictive than the theory that is actually decided by
Dedukti’s kernel, as it implies that nothing is typeable in the case of a non-confluent typing
context. Dedukti’s typechecker, on the other hand, will still allow for typing in a non-
confluent context, as it does not perform any confluence check itself during typechecking.

The fact that Dedukti does not verify confluence can sometimes result in some unexpected
behavior. Namely, in the event of non-confluence, where a term can reduce to distinct normal
forms, then depending on the arbitrary order in which the kernel chooses to apply specific
rewrite rules/f-reduction on certain subterms, it will identify the term with only one of
them, the one it happened to reduce it to.

For instance, if we have a non-confluent rewrite system and the kernel is performing
a conversion check in which it attempts to identify some term ¢ with some normal form
term u; such that ¢ reduces to u;, but in doing so applies reduction in such a way that ¢ is
reduced to some syntactically distinct normal form term us instead, it would not make an
attempt to “backtrack” its reduction steps and perform some kind “search” over all possible
reductions to try to instead arrive at u;. Instead, it would simply report that ¢ and u; are
not definitionally equal, resulting in a type mismatch error.

On the other hand, if we do have confluence, then we can be sure that the above situation
can never arise, causing our more restrictive theory to exactly coincide with the typing
judgment implemented by the Dedukti kernel. In this case, it suffices to apply rules in any
arbitrary order (with backtracking search being unnecessary), and we can be sure that the
equational theory defined by the reflexive, transitive, symmetric closure of our set of rewrite
rules is effectively decided by the Dedukti kernel. So, because all of our reasoning about
translation correctness will be done w.r.t. this theory that requires confluence as a typing
premise, we will want to to be sure that the rewrite system established by our translation
respects the confluence property.

A necessary property for confluence is “local confluence”, expressed as follows:

th,tQ,(A l_%S‘—ﬁBtl/\A'_%S‘—n;tQ) — (EIu,AI—% tp—)Zu/\Al—(_) tQ‘—)ZU)

This is identical to the confluence condition, but using a single-step reduction from s to
derive the divergent terms ¢; and ¢,. A well-known result states that confluence follows

21 Formally, we would say that there does not exist any s such that A F7 t<gs

1.3. DEDUKTI’'S TYPE THEORY 29

from the properties of local confluence and termination. While local confluence itself is not
sufficient for confluence, it is nevertheless useful to ensure that local confluence holds, as an
important “sanity check” as we go about defining our encoding. We will do this by analyzing
the presence and joinability of “critical pairs” upon adding new rewrite rules to our encoding.

Critical pairs arise when two rewrite rules overlap on the same term. For instance,
consider the following rewrite rule:

[n] pred (pred (succ (succ n))) — n. (rg)

Now, if Dedukti is faced with the term pred (pred (succ (succ zero))), we can either di-
rectly apply this rule, or we can can instead apply the earlier defined rule r; on pred, resulting
in two different terms, giving us following critical pair:

pred (pred (succ (succ zero))) <> zero.

pred (pred (succ (succ zero))) <> pred (succ zero).

Critical pairs are not problematic per se — in this instance, the additional rule ro, while
redundant, does not present any issues for our ability to decide equality between Nat-typed
terms because the above critical pair is joinable. Namely, we can apply r; again to the second
term to reduce it to the first term.

In general, however, the presence of unjoinable critical pairs points to ambiguity in our
rewrite system w.r.t. the way that it arrives at a normal form, which may lead to terms
not being identified that should be according to the equational theory that we are trying to
encode. That is to say, it is not sufficient for us to only have that the rewrite rules that we
define are correct according to the intended equational theory — they must also be defined in
such a way that they can effectively decide this theory through the computation of normal
form terms. In some cases (as we will see in [Chapter 3)), it is even necessary to define new
symbols, beyond those originally present in the grammar of the encoded equational theory,
in order to represent these normal form terms.

Translation Overview

Our translation from Lean to Dedukti will involve the encoding of certain aspects of Lean’s
type theory within a Dedukti rewrite system, along with the implementation of a translation
from Lean terms to Dedukti syntax. We will assume well-typed input Lean terms, which
will then be translated to Dedukti and verified with the Dedukti typechecker dkcheck [33].
From the translated Dedukti proofs, we can then translate them to Dedukti encodings of
other systems and finally export these to the target systems. As we will see, however, things
don’t play out quite as neatly as this, as there are some aspects of Lean’s type theory
that do not seem to be directly encodable within Dedukti. Instead, we will have to use a
strategy that involves a preliminary translation to a subset of Lean’s theory, which we call
“Lean™”. At each step along the way, we verify our output with a corresponding kernel.
Starting from and input environment that is well-typed according the Lean kernel, we will
translate it to an Lean™ environment that is checked against a Lean™ kernel. Next, we will
translate this Lean™ environment into a Dedukti library using our Lean™ encoding, which
we verify with the Dedukti kernel dkcheck. Finally, we translate this Dedukti library to the
corresponding encodings of target systems (also verifying these libraries against dkcheck),
and use previously implemented tools for exporting these libraries to be checked by the

30 CHAPTER 1. INTRODUCTION
(- - - T " \R‘
|4 = S WROCQ
_:IVN ﬁ:*% Dedukti " !
R 777 R L ,'I " _______ A
E 2 E,”— \,J: YIDK/L E :__.>E YIOK/A E_—ambdp {/jAng
ﬁ
ey
% /DK/L (oomomeo)

Figure 1.1: Exporting Lean to other systems via Dedukti.

target systems themselves. This overall process is visualized in More details on
the Lean™ theory and the details of the pre-translation strategy will be provided in later

chapters.

Chapter 2

Translation Framework

In this chapter, we will introduce the basic framework of our translation from Lean to
Dedukti. This translation will have to translate Lean terms to Dedukti terms in such a way
that certain important translation correctness properties are satisfied, accounting for the
differences between Lean and Dedukti’s type theories. Let’s start with a description of these
desired properties, which will motivate the overall translation strategy that we subsequently
describe.

2.1 Theoretical Motivations

In order for the output of our translation to be useful (i.e. amenable to the eventual export
of Dedukti proofs to other systems), it must satisfy certain properties that capture some
formal notion of translation “correctness”. To introduce these properties, let’s first establish
our translation notation. Supposing t is some well-typed Lean termﬂ, let us use the notation
|t|~ to represent the translation of ¢ from Lean to Dedukti. Defined as such, |- |7 is only a
partial function, and we do not consider the translation of ill-typed terms. We use the same
function applied to a Lean typing context, that is, |A|™, to signify the translation of A to
a Dedukti typing context.

We will also use the notation ||t~ to indicate a separate “as-type” translation of a Lean
term ¢ to a Dedukti term. This translation will be used in places where expressions of type
Type are expected — specifically, in A-function and function type binder domain types, as
well as in symbol type declarations, and in the translation of Lean types that appear as types
in Dedukti typing judgmentﬂ. We cannot use our ordinary “object-level” translation | - |~
in these as we expect this translation always to produce terms typed as some encoding of a
type in Dedukti, never Type itself. We will see that this as-type translation is in fact closely
related to the translation |- |7.

Note that both translations implicitly take typing contexts as arguments — this is nec-
essary because, as we will see, part of our translation will depend on information that is
not purely syntactic, requiring in particular the use of type inference subroutines to extract
certain additional typing information that is needed by our translation. In general, inferring
types requires complete knowledge of the current typing context, which is why our transla-
tion must also accept as input a representation of the Lean typing context that is applicable

!For convenience, from here on we will also take “Lean term” to always mean “well-typed Lean term”.
2This can be seen, for instance, in our use of the as-type translation in presenting the translation soundness
property below.

31

32 CHAPTER 2. TRANSLATION FRAMEWORK

to the term that is currently being translated.

2.1.1 Completeness

One important property that we would like to ensure of our translation is that it produces
Dedukti terms that have the same “meaning”; in some sense, as the original Lean terms they
were translated from. While it is important for our translation to output terms that are
well-typed in our target system, this is certainly not the only criteria, as we would also like
to ensure that the semantic interpretation of a term is preserved following its translation to
Dedukti.

One way to characterize the “meaning” of propositions is in terms of provability. A
property that we should certainly satisfy is that a proposition is provable in Lean if and only
if its as-type translation to Dedukti is provable. Stated more generally in terms of types, we
would say that a Lean type is inhabited if and only if its as-type translation to Dedukti is
inhabited:

Property 2.1.1 (Correctness of the Encoding). For all terms T" such that A+ T : Sort /¢
we have:

(FAFL:T) < (3t]A17 F ¢ |T)7)

The forward direction is easy to show when we are able to show correctness of the translation,
as characterized by the soundness property described below. So, let’s think about the reverse
direction, which is known the “completeness” property (also referred to in the literature as
“conservativity”):

Property 2.1.2 (Translation Completeness). For all terms T such that A+ T : Sort ¢ we
have:

(3t A7 F ¢ |T|I7) = (Gt AF¢:T)

That is, the inhabitation of the translation of a type in the Dedukti encoding should imply
the inhabitation of the type in the source theory.

Ensuring this property eliminates a certain class of undesirable translations, e.g. a trans-
lation that simply translates every proposition to an encoding of the inductive type True
within Dedukti, allowing us to trivially satisfy the soundness property. Under such a trans-
lation, we would translate False to our encoding of True, which would be inhabited in
Dedukti, while False is not inhabited in Lean, thus violating completeness. At a high level,
the completeness property helps ensure that our translation is not “cheating” by translating
Lean types to types with different semantics in the encoding.

Additionally, satisfying the completeness ensures that we have an encoding of Lean in
Dedukti that is at least as sound as the source encoding. Supposing that we do translate
types faithfully, a lack of completeness would point to a problem in our base encoding of
Lean’s type theory within Dedukti. Assuming that Lean is consistent, and our translation
steps accurately preserve the semantics of terms, the ability to prove False within Dedukti
would necessarily arise from an inconsistent encoding. As such, it is also important to ensure
that we respect completeness as we proceed with the definition of our Dedukti encoding.

2.1. THEORETICAL MOTIVATIONS 33

2.1.2 Soundness

While the completeness property is crucial to having a correct translation, it quite far from
being sufficient on its own. Its usefulness is severely limited by its antecedent, which supposes
the existence of a proof of a translated proposition. However, what if our as-type translation
simply outputs False for every input Lean type? Then, completeness is trivially satisfied
(assuming that False is not provable in our encoding), as the antecedent is always false for
any term 7.

In order to protect against this possible scenario, we need to verify another important
translation property, known as “soundness”. Soundness ensures that any inhabited Lean type
has an as-type translation that is also inhabited in Dedukti:

Property 2.1.3 (Soundness). For all terms T such that A - T : Sort ¢, we have:
(Ft,AFt:T) = (3t |A|T7 F ¢ ||T|7)

This theorem can be formulated in terms of the translation by requiring that the translated
inhabitant serves as the inhabitant in our target theory:

Property 2.1.4 (Translation Soundness). For all terms ¢, T such that A+ T : Sort ¢, we
have:

AFt:T = |A7F7 147 |7

With respect to our base Lean encoding, while completeness helps us to ensure that our
encoding is not ezcessively permissive (so as to allow for a proof of False), soundness is a
complementary property which ensures that our encoding is sufficiently permissive, in the
sense that we are able to prove any property that we were originally able to prove.

2.1.3 Encoding Properties

To show the desired translation properties of soundness and completeness, we would like to
verify certain properties of our encoding of Lean within Dedukti. Namely, we would like to
show that our rewrite system satisfies the properties of termination and confluence, described
below. Verifying these properties also give us greater confidence that the rewrite system
is “bug-free” and correctly implemented w.r.t. its intended behavior, and incrementally
analyzing whether they hold as we proceed in deriving our encoding will help us ensure that
our translation as a whole has the desired correctness properties.

Termination

An important property to ensure about our Dedukti translation is that it produces a termi-
nating rewrite system in combination with our base Lean encoding. Termination is required
to ensure that a translated term can be practically typechecked. While a term may theoreti-
cally be well-typed in the AII/R theory according to some typing derivation and constituent
rewrite sequence, the actual typechecking computation performed by Dedukti may not follow
these exact steps, which may be problematic if there are infinite rewrite sequences.

With respect to our translation, the termination property can be formally stated as
follows:

34 CHAPTER 2. TRANSLATION FRAMEWORK

Property 2.1.5 (Termination). For all valid Lean typing contexts A, there exists no infinite
sequence of terms t1,t,,... such that, for all € N:

AT F7 t—=ptia

While termination guarantees that we can always arrive at an irreducible form, it does not
say anything about how “useful” this irreducible form is. In particular, we do not know
whether this irreducible form is a “canonical” representative of the set of all terms that are
equivalent to the original term in some sense. For that, we need an additional property to
hold, known as confluence.

Confluence

For the existence of an irreducible form to be of practical use to us, it should help us
decide some notion of equality between terms. The specific notion we care about here is
equivalence modulo S-reduction/rewriting via the syntactic comparison of reduced forms
which characterizes the definitional equality judgment used in Dedukti’s conversion rule,
recalled below:

A t(—>;u1 A s‘—>;u2 AF7 g
AF7t=s
As rewrite rules encode judgmental equivalences between terms, the relation AF7 ¢t = s
should ideally be an equivalence relation — that is, it should be reflexive, transitive and
symmetric. As this relation is based on the syntactic comparison of reduced forms, for this
to be the case, we must satisfy the property that any two terms related by the equivalence
closure of A F7 t <4 s eventually rewrite/S-reduce to unique and identical irreducible forms.
That is, any irreducible form should correspond exactly to a “normal form”; which is a unique
representative of the equivalence class of terms defined by our rewrite rules and S-reduction.
Whether this property actually holds, however, depends on particular properties of our
rewrite system. Specifically, it must be the case that our rewrite system satisfies the “con-
fluence” property, which states that if a term s can be rewritten to two separate forms t;
and t,, then ¢; and t5 can always be “unified” by rewriting to some term w. In terms of our
translation, we can formalize this property as:

— ™ DEQ]

Property 2.1.6 (Confluence). For all valid Lean typing contexts A and terms s, t1, to,
A7 s%; th AN AT ET s%; ty = Ju,|A|7F7 # <—>;u NA|T 7ty <—>;u

If we have confluence, we can be assured that any two terms that are related by the equiva-
lence closure of f-reduction/rewriting will reduce to the same normal form. Satisfying this
confluence property will help ensure soundness of our translation, as we defined our typ-
ing judgment A F7 ¢t : T to require confluence of the AII/R context A via the judgment
conf(A)-w.r.t. the translation soundness property, this requires confluence of the translated
Lean context |A|7.

Confluence is also an important “sanity check” to ensure that a rewrite system has been
correctly implemented. It essentially encodes the notion that the particular order in which
the rewrite rules of the rewrite system are applied has no effectrf] on the normal form that

3 An exception to this is that Dedukti also allows for sequential rewrite rules, in which the order in which
rewrite rules are applied can be specified by the user, resolving any ambiguity that may otherwise result in
non-confluence. We do use sequential rewrite rules in some parts of our encoding, see [Section 3.3.3

2.2. A PURE TYPE SYSTEM ENCODING 35

Lean

Aw » AC' (CoC)

A2 > A2
A A

Aw > Mlw

Types dependent on terms

> AL

(dependent types)

AI/R

Figure 2.1: Barendregt’s A-cube

is ultimately arrived at. This is a good sign that the rewrite system has an unambiguous
interpretation, and is therefore more likely to correctly implement the intended equivalence
relation.

2.2 A Pure Type System Encoding

Let’s start with the task of defining our base encoding, consisting of the initial set of type
definitions and rewrite rules that will form the basis of our representation of Lean in Dedukti.
To get started, it will be useful to first frame our translation task as a special instance of a
translation from a more general theory that is well-studied, and for which a known translation
already exists. For this, we look to a particular generalization of dependent type theories
referred as “pure type systems”.

2.2.1 Pure Type Systems

The type theories used by proof assistants often fall into a few generalized categories that
can be seen as varieties or extensions of the eight points of Barendregt’s A-cube [6], shown
in

The systems represented in the A-cube use two type universes, “Kind” and “Type”, with
user-declared types living in Type and with Type having type Kind (with Kind itself being
untypable). Each of the axes of the cube characterize the types of dependencies which are
allowed, that is, the permissible forms of quantification/abstraction. When discussing the

36 CHAPTER 2. TRANSLATION FRAMEWORK

theories of the lambda cube, we say that “types” are expressions that live in Type, while
“terms” are expressions that live in some type.

Dedukti’s type theory, the All-calculus modulo rewrite rules, is an extension of the front-
bottom-right corner of the cube, the AII calculus. The AII calculus allows for dependent
types, where types can depend on terms. This is characterized by Dedukti typing rule for
function types, recalled below:

AF? A:Type A,xz: A" B:Type
AF? (x:A) — B:Type
In this rule, the typing of the codomain can utilize a variable that is bound to the domain

type.

Notably, however, Dedukti does not allow for types to depend on types, meaning that
types cannot be quantified ovelﬂ For instance, the following type declaration that attempts
to declare a type-polymorphic identity function is not valid in Dedukti:

IALL

id : (t:Type) =t —t.

Lean, on the other hand, can be seen as an extension of the back-top-right corner of the
lambda cube, known as the Calculus of Constructions (CoC). In CoC, types and terms
can depend on bound variables representing types or terms, which can be seen as the most
general form of dependent types. In particular, within CoC, it is possible to quantify over
types, corresponding to the rule for function types in Lean:

AFA:Sort ¢/ A,x:AF B:Sort ¢
AF(x:A)~ B: Sort (imax ¢ ()

Here, there is no restriction on the universe that the domain type inhabits, allowing in
particular for the definition of type-polymorphic functions. This powerful capability makes
CoC a common type-theoretic basis for several practical proof assistants.

Many of these systems can be interpreted as what are known as “pure type systems”
(PTSs). A PTS is a generalized extension of CoC with a (possibly infinite) set of type uni-
verses (not necessarily just Type and Kind), along with special universe relations describing
the typing rules relating to these universes. Precisely, a PTS is described by a set of universes
S and a set of axioms A C § x S such that, for all (s1,s2) € A:

[ALL|

AFTS 51 s,
And, for all (sy, s2,83) € R:
AT A:sy Ax: AF™ B:s,
AFTS (£ A) — B:s3

where we use the notation A H'TS ¢ : T' to indicate the typing judgment of a generic PTS.
In particular, CoC can be considered a specific instance of a PTS defined by the following
assignments:

S := {Type,Kind}
A :={(Type,Kind)}
R := {(Type, Type, Type), (Type, Kind,Kind), (Kind, Type, Type), (Kind,Kind, Kind)}.

4However, it is possible to achieve the equivalent of type quantification through the use of rewrite rules,

see [Section 2.2.3

2.2. A PURE TYPE SYSTEM ENCODING 37

2.2.2 Lean as a Pure Type System

Lean’s type theory can be shown to generally fit the mold of a PTS. Lean’s type universes
come in the form of an infinite hierarchy of “sorts” indexed by “universe levels”. Sorts in
Lean derive from the Sort ¢ expression variant:

e:=..|Sort £]...
Recall that level expressions ¢ are taken from the following grammar:
C:=u|sl|max ¢ ¢ |imax (¢ uwelU

with a particular interpretation under a universe level parameter instantiation (as was de-

scribed in [Section 1.2.2)).

In terms of a PTS, Lean’s sorts correspond to a universe set S such that
S :={Sort (},

that is, the set of all sorts indexed by arbitrary universe level expressions. Each sort is
typable as the sort with the successive universe level, as expressed by the sort typing rule:

AF Sort ¢: Sort (s) [SORT]

This corresponds to the axiom set:
A :={(Sort ¢, Sort (s ¥))}

Lean allows for arbitrary quantification over types at every universe level, as expressed
in the rule typing function types:

AFA:Sort ¢/ A,x:AF B:Sort
AF(z:A)~ B:Sort (imax (()

[ALL|

This is consistent with Lean’s type theory being interpreted as an extension of CoC. [ALL]
corresponds to the following PTS rule set:

R :={(Sort ¢, Sort ¢, Sort (imax ¢ ¢'))}.

2.2.3 Encoding Pure Type Systems in A\lI/R

Rather than extending the AII calculus with additional quantifications to obtain CoC (which
then generalizes to theories resembling that of Lean), an alternative way to extend it to
improve its representational power is to add rewrite rules; in this way, we obtain the AII
calculus modulo rewriting that Dedukti is based on. As mentioned earlier, AII does not
allow for quantifying over types, and thus neither does AIl/R. If our goal is to translate from
PTS-like type theories such as Lean, where such quantifications are possible, how, then, are
we to represent these quantifications within AIl/R? Can we use the newly introduced rewrite
rules to enable us to simulate this kind of quantification?

38 CHAPTER 2. TRANSLATION FRAMEWORK

Meta-Types

The key observation made by Cousineau and Dowek is that while we cannot quantify over
types in AII/R, we can quantify over a “meta-type” whose elements themselves represent
types, making use of rewrite rules to effectively encode higher-order function types. In their
PTS encoding, they create a type U, for every universe in S:

Vse S, Us : Type.

These are the meta-types that we will be able to quantify over in A\II/R. To recover actual
types from the elements of each meta-type, we also declare a “decoding function” symbol e,
for each universe as follows:

Vse S, € : Us— Type.

Other than the U, we will never define a new type directly in Type: they will always be
declared at the object-level as a member of some U,, and their constructors will use ¢, to
produce the output type. For instance, a type representing the natural numbers might be
translated as:

Nat : U,.
Nat.zero : ¢, Nat.
Nat.succ : €, Nat — ¢, Nat.

Axiom Encoding

We also need “type variable” symbols for each of the universes, which are typed as the
universe they are meant to be typed as according to the axioms:

\V/(Sl,SQ) S A, 51 . USQ.

These are accompanied by rewrite rules on the decoding function €, ¢ hat allow them to be
rewritten to the type universes they represent:

V(Sl,Sg) € A, [] €sy 51— USQ.

These symbols are useful, for instance, in defining certain type-polymorphic functions, which
may themselves be applied to universes. For instance, suppose we add to CoC an additional
Prop universe that lives inside of Type, giving rise to the axiom (Prop, Type) and the type
variable:

Pr.op 1 Urype-
which produces the accompanying decoding function rewrite rule:
(] €rype Prop — Uszop-

Suppose that Prop is inhabited by the propositions True and False. This would be encoded
as:

True : Uprop.

False : Upyop.

2.2. A PURE TYPE SYSTEM ENCODING 39

Now, suppose we want to define a type-polymorphic identity function, encoded as:

id : (T : UType) — €Type T — €Type T.
Jid <= X (T : Urype) (t: €rype T). t.
If we wish to instantiate this as the identity function for Prop, we need to use the Prop

symbol, passed as the first argument to id. Thanks to the rewrite rule, this application
types as:

A l_(_> id PI'OP : UProp — UProp;

enabling the application id Prop True to be well-typed and reduce to True.

Rule Encoding

To enable the representation of function type dependencies beyond those available to A\II/R,
we need to use a deep encoding of PTS function types, via the definition of the following “Pi
variable” symbols:

V(s1,89,83) € R11,, 4 ¢ (T:Uy) = (6, T = Us,) — Us,.

Note that the second argument of the Pi variable is a function that allows for the encoding
of dependent types. These Pi variables come with the following set of rewrite rules:

V(Sl, So, 83) € R, [T, f] €sq (H.Sl,SQ T f) —> (t D€gy T) — €s, (f t)

which enable them to rewrite to Dedukti’s native dependent function types when applied to
our

We can see the utility of Pi variables by again returning to our identity function ex-
ample, where it enables an instantiation of id as a higher-order function. Suppose that
(Type, Type, Type) € R. This would correspond to the following Pi variable and rewrite rule:

1LITyPe,Type : (T : Urype) = (€rype T — Urype) = Urype-
[T, f] 6Type (HTypeJype T f) — (t : 6Type T) — 6Type (f t)

If we wish to instantiate id as the identity function for the function type Uprop — Uprop, We
need to instantiate the type argument of id as the encoding of this function type in Type:

A l_(_> id (HType,Type Pr'op ((_ . UProp) => Prop)) . (UProp — UProp) — (UProp — UProp)

This allows the application id (ITrype rype PTOP (A(_ : Uprop) PTop)) (A(_ : Uprop).True) to
be well-typed and reduce to A(_ : Upyop).True.

Functionality

For our encoding to work, it is crucial that our PTS is “functional”; in the sense of there being
at most one parent universe for each universe, and at most one universe that every function
type occupies given its domain and codomain universes. This can be precisely stated in the
following rules:

(51,82) € AN (51,83) € A = 59 = 53
(s1,82,53) € RN (81,592,54) €E R = s3 =54

40 CHAPTER 2. TRANSLATION FRAMEWORK

Without this property, we would have to declare multiple types for the same type variable /Pi
variable, which is of course not permitted in Dedukti. As such, the encoding above is only
applicable to functional pure type systems. Cousineau and Dowek have shown that if a PTS
is functional, a PTS-to-AIl/ R translation based on this encoding respects both the soundness
and completeness properties.

The functional PTS requirement is rather restrictive, as not all type systems used by
real-world proof assistants can be framed as functional PTSs. For instance, the popular
proof assistant Rocq, while having a type theory that is interpretable as a PTS, is not
a functional PTS. While Rocq is similar to Lean in that it features an infinite universe
hierarchy of indexed sorts, its universe hierarchy is cumulative. Cumulativity is particular
case of subtyping applied to universes in Rocq, with any universe in Rocq having multiple
parent, universes — in fact, infinitely many — corresponding to the following axiom set:

{(s61,80,) 1, 01 < £

This axiom set is clearly non-functional, because for any ¢; there are infinitely many /¢
such that /1 < ¢5. This means that the PTS encoding described by Cousineau and Dowek
cannot be used as a base encoding of Rocq in Dedukti. However, alternative approaches to
encoding cumulative universe hierarchies in AII/R have been described, first by Assaf [4],
with an extension satisfying completeness later given by Thiré |39], based on the strategy of
making the cumulativity relation explicit in the translation.

Fortunately, however, Lean’s base type theory can be interpreted as a functional PTS, as
Lean does not have cumulativity. Recall the axiom and rule sets that we derived for Lean:

A :={(Sort £, Sort (s {))},
R :={(Sort {1, Sort {5, Sort (imax {; (3))},

It is easy to see that both sets satisfy the functionality requirement: in the axiom set, the
sole parent universe of a universe is the successor of that universe, and in the rule set, the
only universe that a function type can reside in is the imax of the domain and codomain
universe indices.

2.2.4 A Pure Type System Encoding for Lean

As we have established that Lean’s type theory can be interpreted as a variant of a functional
pure type system, it should be feasible to define a base encoding of Lean within the AIl/R
theory along the lines of the generic encoding described by Cousineau and Dowek. Let’s get
into the details of how we can practically implement such an encoding within Dedukti.
Firstly, let’s define the symbols related to our encoding of Lean’s universe levels in De-
dukti. We declare type L type for translated universe levels in our encoding, along with
“pseudo-constructors” corresponding to each of the variants of Lean’s universe level syntax:

L : Type.

def z : L.

defs : L— L.
defmax : L —- L — L.
def imax : L — L — L.
def v : Nat - L — L.

2.2. A PURE TYPE SYSTEM ENCODING 41

Note that these pseudo-constructors are in fact definable symbols, rather than static ones.
This is because they have rewrite rules associated with them that allow us to compute a
normal form — these are described in detail in Also associated with normal form
computation is the inst symbol, which is used to wrap the translation of universe level

parameter instantiations in constant references (see [Section 3.3.3):

inst : L — L.

See for the exact details on how we translate Lean’s universe levels.

The PTS encoding presented by Cousineau and Dowek requires the definition of the
encoding symbols U, and ¢, for every s € S, which is only practically possible in an actual
encoding under the assumption of a finite set S of sorts. Because Lean’s universe hierarchy is
infinite, there is no hope of explicitly enumerating all of the possible universe symbols in our
encoding. Additionally, we have to consider abstract universes arising from Lean’s support
for prenex universe level polymorphism, where we may have level parameters that arise from
a constant declaration’s universe context, as in the following universe-polymorphic identity
function that is defined on any Type u:

def id.{u} (T : Typeuw) : T T := fun t => ¢

According to Lean’s typing, within the universe context of id, we have A F Type u :

Type (u + 1), which needs to be reflected in our translation, where the universe parameter
u will likely be represented by a bound variable.

This means that that our PTS-based encoding of Lean in Dedukti should necessarily be
parametric in our declaration of the meta-type, decoding function, type variable, and Pi
variable Symbolﬂ We can define the parametric meta-type U and decoding function € as
follows:

U : L — Type.
€ : (I:L)—UIl— Type.

We can also declare the parametric type variable symbol § according to Lean’s universe
typing relation A+ Sort ¢: Sort (u + 1):

$: (l:L)—=U (sl).

We can accompany this with a rule that decodes a given universe encoding into its corre-
sponding Type-typed meta-type representation:

Me(sl)(51) — UL

However, note that the pattern s [is perhaps too restrictive over which terms the LHS can
possibly match on. As mentioned earlier, s is a defined symbol in our encoding that we
will define rewrite rules on for the purpose of computing universe level normal forms, as
described in In light of this, requiring the LHS to match on the exact pattern
s [is likely to result in non-confluence in combination with the rules from our universe level
encoding. So, we need to find a better way to state this rule.

®In this respect, our approach closely resembles that taken by Assaf [5] in an embedding of Rocq’s infinite
universe hierarchy in Dedukti.

42 CHAPTER 2. TRANSLATION FRAMEWORK

Fortunately, it is in fact not necessary to specify a pattern in this position at all. Dedukti
accepts the rewrite rule if we place a fresh pattern variable x in the spot of the first argument
to e.

Lx]ex (s1) — UL

This allows the rule to match on any term in that position.

At first glance, this may seem like a bad idea, since the argument needs to be of a very
specific form for the rewrite rule to make sense: it should be equivalent to s [. If it is not,
then the rewrite should not go through. However, as formalized by Blanqui [9] and Saillard
[33], rewrite rules in Dedukti can only apply to already well-typed terms. In order for the
LHS to be well-typed, this must be the case, as enforced by the dependent type of €. This
is verified by Dedukti’s subject reduction checking algorithm, which verifies that the rule
preserves typing: because the RHS types as Type, the LHS must too, and for that to be the
case, x must have the same normal form as s l]ﬂ In fact, Dedukti allows us to state the rule
a bit more compactly:

e (50) — UL

W

Dedukti allows rewrite rules to contain placeholder patterns “_”, denoting the use of a fresh
pattern variable.
For our encoding of Lean’s dependent function types, we define a parametric Pi variable

symbol II as follows:
f.[: (61L>—>(€2L)-)(AUfl)—>(€€1A—>U€2)—>U(1maX£1€2>

along with its decoding function rewrite rule, that rewrites it to Dedukti’s native function
types:

[01,00,A)Ble (I10; 6, AB) < (x:(ely A)) — (el (B x)).

2.3 The Syntax-Level Translation

Now, let’s describe the exact translation we perform on well-typed Lean terms into Dedukti
syntax, assuming the base PTS encoding described above. We will consider in turn each of
the syntactic categories comprising the grammar of Lean expressions, defining the semantics
of our translation in each case. Our translation will closely mirror that defined by Cousineau
and Dowek, but there will also be some Lean-specific aspects to take into consideration. We
define our translation on a (mostly) syntactic level as a recursive function on terms taken
from our Lean grammar. We will require some non-syntactic information in the translation
of dependent function type expressions, so, as mentioned earlier, our translation function
will implicitly take into account the typing context A in order to be able to infer types as
needed.

6Specifically, Dedukti invokes a unification algorithm which assigns a metavariable corresponding to x to
the value 1vl.s 1. Knowledge of this assignment can then possibly be used later on in subject reduction
checking (though this is not the case in this example).

2.3. THE SYNTAX-LEVEL TRANSLATION 43

Lean : A Restricted Source Theory

Before we can precisely specify the translation semantics, we must first refine the source
theory of our translation. Thus far, we have been discussing things in terms of a translation
|- |7 from Lean to Dedukti. While it is indeed our end goal to define such a translation, for
the sake of consistency of our notation with that of later sections, we must acknowledge the
fact that the translation we define below really accepts input terms that are well-typed in a
particular sub-theory of Lean, that we refer to as “Lean™” (which uses the same syntax as
Lean). We use Lean™ as an intermediate theory between Lean and Dedukti, that is more
amenable to a direct syntactic translation. The exact specifics of the Lean™ theory are
elaborated in [Chapter 4}

Correspondingly, we define a new piece of notation, | - |~ for our translation from Lean™
to Dedukti. For the rest of this this chapter and [Chapter 4 we only concern ourselves with
this translation, with our soundness and completeness properties redefined with respect to
it:

Theorem 2.3.1 (Lean™ -to-Dedukti Translation Soundness). For all terms 7" such that A +-
T : Sort /£, we have:

AFt:T = |AZF ¢ |77

Theorem 2.3.2 (Lean™-to-Dedukti Translation Completeness). For all terms 7" such that
AFT:Sort ¢ we have:

3 IAIZ L ||IT)7) = Gt AF ¢:T)

Later, in [Chapter 5, we will define a preliminary translation |- |, proving soundness and
completeness for that preliminary translation, from which soundness and completeness of
the composite translation || - |7|Z immediately follows.

Translating Contexts

Before we define our translation of actual Lean™ terms into Dedukti terms, let’s first de-
scribe the overall structure of the translation on the level of typing contexts, so that we can
effectively reason about the correctness properties that we would like to show. Recall the
overall structure of a Lean™ context:

A= (3 (Ty; T'p))

where X is a constant context, I'yy is a universe level parameter context, I'p is a bound
variable context. In stating our soundness property, we would like to define a translation
|A|~" on this context to a context of the form corresponding to Dedukti typing contexts:

|AIZ = ((Xp; Xg);T)

where X p is a context of type declarations, X is a context of rewrite rules associated with
the types in Xp, and I' is a bound variable context.
We define our context-level translation as the following:

(35 (Tos Tp))|= = (B, 121575 Sk, [B17): (ITo| = [Ta[2))

44 CHAPTER 2. TRANSLATION FRAMEWORK

|X|5 and |X|7 represent the translation of a Lean constant context to a Dedukti type
declaration context and rewrite rule context, respectively. X% and X% represent the type
declarations and rewrite rules originating from the base PTS encoding, which are prepended
to the translated type declaration and rewrite rule contexts. (|I'y|~,|T'g|~") is the translation
of a Lean universe level parameter context and bound variable context to a Dedukti bound
variable context, in which we concatenate the translation of the universe level parameter
context with the translation of the bound variable context. The particular semantics of the
translations |X|57, [S]7, |[Tv|Z, and |T'5|~ will be described below['}

Translating Types

In defining our as-type translation, we take after the PTS encoding of Cousineau and Dowek,
using the decoding function e applied to the object-level translation of a term representing
a Lean type. Specifically, for any type A F T : Sort ¢, we define our as-type translation as
follows:

[T~ = e Jel [T

In the case of T" being an inductive type, the as-type translation of 7" will remain an ap-
plication of €, with € |¢|;, |T|~ being the canonical representation of that inductive type in
Dedukti. In the case of T' being a universe or function type, however, ||~ will be an appli-
cation of an encoding-specific symbol $ or II, and the associated decoding function rewrite
rule will take effect, rewriting the application to an application of U or a Dedukti function
type, respectively.

Constant Declarations and Universe Level Parameters

There are various forms of constant declarations in Lean, represented in Lean’s metapro-
gramming framework with the following inductive type:

inductive ConstantInfo where

| axiomInfo (val : AxiomVal)

| defnInfo (val : DefinitionVal)
| thmInfo (val : TheoremVal)

| opaqueInfo (val : OpaqueVal)

| quotInfo (val : QuotVal)

| inductInfo (val : InductiveVal)

| ctorInfo (val : ConstructorVal)
| recInfo (val : RecursorVal)

Every constant declaration has an associated type, which we translate to Dedukti as a symbol
declaration, whose type is the as-type translation of this type. For instance, consider the
following definition in Lean:

def z : Nat := Nat.zero

In this thesis, the translations |X|5’, |X|7 will be specified mostly informally and through the use of
examples. A formal description of these translations would require coming up with special notation to
indicate every variety of a Lean constant declaration, together with a fully general presentation of their
associated reduction rules, which is likely more trouble than it is worth for an initial presentation of our
translation. See work by Assaf [5] and Ferey [17] for a more complete formal description of the translation
of inductive type declarations.

2.3. THE SYNTAX-LEVEL TRANSLATION 45

This translates to Dedukti as the following symbol declaration:
def z : € (s z) Nat.

Definitions, theorems, and opaque declarations in Lean also have an associated value
expression, corresponding to the definition body/theorem proof, which we represent as the
RHS of a rewrite rule defined directly the previously declared symbol. For instance, the
translation of the body of z becomes the RHS of the following rewrite rule:

] 2 < Nat.z.

Adding rewrite rules for defined symbols in this way implements the equivalent of Lean’s
“d-reduction” in our translation, in which constants may be substituted for their values in
the course of reduction (see for more discussion on J-reduction). Additionally,
since Dedukti performs subject-reduction-checking on rewrite rules to ensure that the LHS
and RHS have the same types, the well-typedness of these rewrite rules ascertains that the
translated values are well-typed according to their translated constant types, corresponding
to the top-level typechecking of declared constants performed by the Lean kernel.

Axioms, inductive types, and constructors are simply defined as static symbols, without
an associated rewrite ruld’] For instance, consider the inductive type for natural numbers in
Lean:

inductive Nat where
| zero : Nat
| sucec (n : Nat) : Nat

This is translated to the following set of Dedukti symbols:

Nat : U (s z).
Nat.zero : € (s z) Nat.
Nat.succ : € (s z) Nat — € (s z) Nat.

Inductive type recursors are translated as defined symbols, as they have associated rewrite
rules that we translate directly from the “rewrite rules” implemented natively for them by
the Lean kernel (see [Section 4.2).

However, there is one more important aspect of our translation of constant declarations
that we have not yet mentioned: how exactly do we handle universe polymorphism? When we
translate a Lean constant declaration, there may be universe level parameters associated with
the constant identifier C' using the declaration syntax C' {u, v, w, ...}. This indicates
a universe-polymorphic constant, where the universe level parameters must be instantiated
wherever the constant is referenced later on (using this same syntax, but replacing the
parameter names with concrete universe instantiations).

For instance, recall our universe-polymorphic identity function:

def id.{u} (T : Typeu) : T+ T := fun t => ¢

Any references to this constant would have to instantiate the universe level parameters, for
example in the following definition that uses a particular instantiation of id:

8The only exception is for structure-like inductive types, where the constructor is declared as a defined
symbol along with a rewrite rule corresponding to Lean’s “struct-7” rule, see [Section 4.1.3|for more details.

46 CHAPTER 2. TRANSLATION FRAMEWORK

def idRef : Nat := id.{1} Nat Nat.zero

When the Lean kernel is typechecking the type and body of the constant declaration of
id, these universe level parameters constitute the universe level parameter context I'y; that
forms parts of the typing context. The parameters in this context are relevant in the rules
for deciding equality between universe levels, which is invoked by the rule for definitional
equality of sort and constant expressions (recall the rules [CGR-SORT]| and [CGR-CONST],
defined in [Section 1.2.2).

In our Dedukti translation, we will need to replicate the semantics of Lean’s universe
level equality checking algorithm, somehow. Such an algorithm will have to be aware of these
universe level parameters in some way, in order to be able to properly compare universe level
expressions. So we will need some way to simulate this universe level context in Dedukti.
There are a couple of ways we could potentially go about this:

e We could define a “global” context of universe level parameters using some canonical
representation for them (e.g. natural numbers), for instance, translating the type of
id as:

defid : (T:Uz,) —wez, T — ez, T.

Here, z, is the canonical representation of the first universe level parameter, z; z, is
the canonical representation of the second, and so forth. In this case, since we do
not account for the level parameter contexts introduced by individual constants, we
will have to ensure that our translation only generates such parameter representations
within the range of the list of level parameters from the original level parameter context.

e Alternatively, we could simulate a level parameter context using Dedukti’s bound vari-
able context, by introducing in the translated symbol type declarations of universe-
polymorphic Lean constants a set of additional arguments of type L, one for each
universe level parameter. With this approach, the translation of the type of id be-
comes:

defid : (I: L) = (T:Ul)—elT —e€lT.

Here, instead of using natural numbers to represent universe level parameters in the
translation of the definition body, we instead use the variables of Dedukti itself, which
are bound by surrounding abstractions, one for each declared universe level parameter:

Jid — ((:L)(T:Ul)(t:elT)=>t.

These approaches correspond to “deep” and “shallow” encodings of level parameters, respec-
tively. Initially, the latter approach may seem preferable as a more “direct” encoding that
respects the original constant’s universe level parameter context, with translation correctness
in this regard enforced by the theory encoding, rather than by the specifics of the translation
algorithm. However, a shallow encoding produces difficulties in our ability to implement a
decision procedure for universe level equality in Dedukti based on a rewrite system that
derives a normal form. A deep encoding, on the other hand, in addition to being less read-
ily verifiable, complicates the task of universe level parameter instantiation in Dedukti. In
the end, we decide to go with a “hybrid” encoding that incorporates aspects of both, see
for more details on the rationale behind this approach.

2.3. THE SYNTAX-LEVEL TRANSLATION 47

Our hybrid encoding does explicitly abstract over level parameters in the translated
type of constants, as in a shallow encoding, with parameter instantiation corresponding
to p-reduction via the application of constants to universe level instantiations. Our final
translation of id appears as follows:

Jid — (I: L) (T :U (vNat.zerol)) (t: e (v Nat.zero l) T) => t.

The use of the special symbol v in the translation of universe level parameter references is
described in more detail later in Section 2.3

Note that L is a constant specific to our encoding — while it has similarities with the
type Lean.Level from Lean’s meta-programming framework (that is not available to or-
dinary Lean users), it is a different type that is used for different purposes, (in particular
normalization, see [Chapter 3). Terms of type L can only appear in our translation as the
initial arguments to the Sort and Pi constructors from our PTS encoding, and as the initial
level-instantiating arguments of references to universe-polymorphic constants. The type L
itself only appears in our translation as the initial argument types of II/\ binders in the
translated types/values of universe-polymorphic constants.

This approach to handling universe polymorphism is reflected in the form of our context-
level translation as described above, in which we append together a translation of the universe
level parameter context with a translation of the bound variable context to obtain a bound
variable context in Dedukti. Precisely, we can state our translation of a universe level
parameter context as follows:

0= =1

Ty, u|” = |Ty|Z,u: L

Constant References

As described above, our hybrid universe encoding turns a Lean constant declaration’s uni-
verse level parameters into explicit function arguments of type L. Correspondingly, we
translate any references to these constants carrying universe parameter instantiations (as a
list of levels) into the corresponding Dedukti symbol applied to the translations of each of
instantiating levels, in order. Formally, we define the following translation:

{0y, ... 0,}|7 = C (inst |[1]1) ... (inst [6u])

Where the universe level translation ||, is defined below. The inst wrapper around instanti-
ations of level parameters is necessary as part of our hybrid universe encoding for computing

normal forms, see [Section 3.3.3|for more details.

Type Universes

Lean’s type universe hierarchy is made available to the user through the special Sort key-
word, where the user can specify a type universe as Sort ¢ for some universe level term £.
However, just as in the case of universe level parameter instantiation for constant references,
this is a specialized syntax that we need to account for in our translation, with the “argu-
ment” ¢ coming bundled together with the Sort keyword in Lean’s syntax (as opposed to
being an explicit application).

48 CHAPTER 2. TRANSLATION FRAMEWORK

Similarly to the constant reference case, we translate sort expressions into explicit ap-
plications, using the § symbol from our PTS encoding applied to the translated universe
level:

|Sort ¢|~ =5 |{|L

Universe Levels

The actual translation of individual universe levels expressions must be specially handled
by our translation, as they are a separate part of Lean’s syntax with their own syntactic
constructors and special interpretation during typechecking. In particular, the Lean kernel
implements a special function for determining whether two universe level expressions should
be considered semantically equivalent (that is, equivalent under any possible instantiation
of the universe level parameters). The implementation of this check in Lean 4 is based
on the partial computation of normal forms (and is currently incomplete), while Lean 3
implemented a complete but less efficient double inequality check algorithm, the semantics
of which were described by Carneiro [13].
Recall the grammar for universe level terms:

Ci=wu|z|s{|max {4 (5| imax {; (o

where u € U, with U being a set of universe level parameter symbols.
Our translation is simply a direct mapping from Lean’s level terms to a L using these
pseudo-constructors:

|z|, =z
sl =8/
lmax ¢; lo|p :=max |[(1|p |l2|L

]imax gl €2|L := imax M1|L |£2|L

The special consideration we have to make is for the translation of universe level pa-
rameters, in which we replace a named variable with a v construction that takes a unique
canonical index as well as a free variable from the context, both of which are needed for
the hybrid encoding scheme described in [Section 3.3.3] Specifically, given the Lean universe
level parameter context I'y containing parameter u at position i, we define the following
translation:

lulr, == v |i|yas w

Where the translation |i |y, represents the translation of the natural number i to the following
Peano representation in our Dedukti encoding;:

Nat : Type.
Nat.zero : Nat.
Nat.succ : Nat — Nat.

Functions

Our translation of A-functions takes after that of Cousineau and Dowek, directly mapping
onto Dedukti’s own A-functions via a shallow encoding. Concretely, we define our translation

2.3. THE SYNTAX-LEVEL TRANSLATION 49

of Lean’s M\-functions as:
|fun (z:T) => b7 :=(x: |T||7) => |b|~

We make sure to use the as-type translation ||-||= for the translation of the domain type T,
which respects Dedukti’s requirement on the typing of lambda domains — namely, that they
must live within Dedukti’s Type.

Function Types

Dependent function types in Lean are identical in form to A\-functions, consisting of a bound
variable from a specified domain, along with a term which may reference this bound variable.
In the case of a A-function, this term represents a function body, while in the case of a
dependent function type, this term represents a dependent codomain type. Given this close
similarity, our first inclination may be to define a similar translation to what we did in the
M-function case, directly mapping Lean’s dependent function types onto Dedukti’s dependent
function types as follows:

2

(2 A) » BIZ=(x: [[AlIZ) — [B[Z

However, doing so would violate our soundness property. According to [ALL], the type of a
function type in Lean with a domain in Sort ¢ and codomain in Sort ¢ is Sort (imax ¢ ¢'),
whose as-type translation to Dedukti is U (imax |{|; |¢|}). However, the type of function
types in Dedukti is always inferred as Type. For our translation to be correctly typed, we
need to encode it in Dedukti such that that it is typed under U (imax |¢|L |¢|}).

This was the exact purpose of the IT symbol we defined for our encoding. We define our
translation such that, for any terms A, B such that AF Sort £:and A,z : A B : Sort ¢

(w2 A) = BIZ =11 [t |ely, [AIZ (@2 |A]Z) = |BI2)

Thanks to the rewrite rule defined on ¢ when applied to II, the as-type translation of a
function type rewrites to the form that we would expect:

AFT (s A) » Bl[Z s [[AZ) — [BIZ

Note that, unlike the previously defined translations, the translation of function type expres-
sions is not purely syntactic, as we require knowledge of the domain and codomain universe
levels ¢ and ¢ in order to construct our translationf

In terms of our context-level translation, we translate bound variables introduced into
the typing context by lambdas and dependent function types as follows:

I'p,x:T|7 = |[p|Z,x:||T]Z

°In regards to the actual implementation of our translation, this information is not present in the fields
of Expr.forallE, which is the constructor corresponding to function types in the Lean metaprogramming
framework. Therefore, our translation requires the use of Lean’s type inference facilities in order to infer
the sorts of domain types to extract the universe level terms from. To have access to these facilities, we
implement our translation in Lean’s MetaM monad, which is designed for writing metaprograms in Lean.

50 CHAPTER 2. TRANSLATION FRAMEWORK

That is, we append a binder using the same identiﬁeﬂ to the translated bound variable
context, using the as-type translation of the binder’s original Lean type as the Dedukti
binder type.

Applications

In translating application terms to Dedukti, we follow the strategy of Cousineau and Dowek,
using a shallow encoding in which we translate Lean’s applications into Dedukti’s native
application syntax:
|falZ = 1f1Z [al”

Since our translation of A-functions is also shallow, such a translation allows Lean’s -
reduction to map directly onto Dedukti’s S-reduction. This approach is in contrast to a
deep encoding approach to translating applications, which might involve the use of a special
binary application symbol in the encoding, along with an associated rewrite rule encode
S-reduction. While such an approach has theoretical benefits in certain applicationﬂ for
our purposes it has proven sufficient to take a shallow encoding approach.

Free Variables

As described above, we take a shallow encoding approach our encoding of A-functions and
applications, relying on Dedukti’s native S-reduction for reducing S-redexes that would nor-
mally reduce in Lean, rather than on the use of special encoding-specific A-function /application
symbols along with an associated rewrite rule.

In accordance with this, we have no special encoding of bound variables in Lean, mapping
them directly onto Dedukti’s own variable references. Given a free variable context I'p, we
translate an occurrence of some variable z € I'g to the same variable z € |I'g|~":

x|~ =2

Let Binders
Recall that Lean features support for let-bindings (a.k.a. local definitions), having the syntax:
let (x:A) == vinb

which declares that within the let binding body b, the variable x of type A has value v.

In order to translate Lean’s let-binders to Dedukti, we will likely have to make use of
some special encoding or translation, as Dedukti has no native support for let bindings. An
easy way to define a correct translation of let binders is to simply expand references to the
let-bound variable within the body of the let expression. Formally, this translation would
look like:

|let (x:A) = v in b|~ = |blx/v]|T

10Recall that the translated Lean universe level parameter context is concatenated with the translated
Lean bound variable context in obtaining our Dedukti bound variable context. As such, we have to be sure
that there are no conflicts between the variables names in the translated contexts that could create ambiguity
regarding whether a Dedukti variable refers to a universe level parameter or a bound variable. In terms of
the theory, we resolve this by requiring that the universe level parameter and bound variable name sets U
and X are disjoint.

H1See for instance, the work by Felicissimo et. al. |15], where it facilitates a proof of completeness in a
possibly non-terminating system.

2.3. THE SYNTAX-LEVEL TRANSLATION 51

Note that this is also equivalent to the following translation:
|let (z:A) = v in b= = |b|Z [z/|v|Z]

Such an approach would work, however it is not ideal since we duplicate the translated let-
bound value expression |v|~ wherever the let-bound variable x appears in b. Ideally, we
would be able to preserve this sharing to some extent in our output.

In this direction, the closest analog of let-expressions in Dedukti seems to be [-redexes,
which are expressions involving a lambda function application head applied to a value (which
is immediately reducible via [BETA]"). Specifically, we could imagine defining the transla-
tion:

|let (x: A) ::vlnb|;>:|fun(A) =>b)v|”
= (@ [JA[Z) => [b]7) |o|=

However, such a translation is not guaranteed to be sound, as the abstraction (fun (z
A) => b) v may not be well-typed in Lean™ (and hence will not be well-typed in Dedukti
either). The well-typedness of b in Lean™ assumed that was bound in the typing context
with the value v. That is, we have A,z : A == v = b : B for some term B. For the
abstraction fun (z : A) => b to be well-typed, we require instead that A,z : A b: B, that
is, that b should be well-typed regardless of the value of x, which is a stronger requirement.

The reason that these two conditions are not equivalent is attributable in particular to
dependent types, and can be seen concretely in the following example. Suppose that we have
the symbol £ below, which has a dependent function type that accepts a Nat as the second
argument if the first argument is a Nat.succ application, and a Unit otherwise:

def F : Nat =+ Type
| Nat.zero => Unit
| Nat.succ _ => Nat

axiom £ : (n : Nat) + F n = Type

The definition below uses f within a let binding, using the bound let variable as the first
argument:

def letEx (n : Nat) : Type :=
let x : Nat := Nat.succ n;
f x Nat.zero

If we were to replace this let binding with a [S-redex, we would end up with an ill-typed
term:

def badRedex (n : Nat) : Type :=
(fun (x : Nat) => f x Nat.zero) (Nat.succ n)
--~ Error: application type mismatch

The issue is that in abstracting away the particular value of x, we have lost information that
is necessary for the application of £ to be well-typed.

So, we can see that S-redexes do not provide a fully general solution to the problem of
encoding let bindings within Dedukti. While it may indeed be possible to use a [-redex-
based encoding in the majority of cases, where such type dependencies do not appear, in

52 CHAPTER 2. TRANSLATION FRAMEWORK

general we need to think of a way to encode let binding in such a way that we preserve
the particular value of the let-bound variable. In this regard, we take after the strategy of
Assaf [p] in defining our translation of let binders, by constructing a “closure” on the let
binder’s bound value that is declared as an auxiliary function definition. This closure is
constructed as a A-function that abstracts over all of the bound variables present in the let
binder’s bound value, as well as the variables appearing in these variables’ types (and the
variables appearing in their types, and so on), with the body of the auxiliary function being
the translation of the bound value. We then translate the body, replacing any references to
the bound variable with an appropriate application of this auxiliary definition to the original
variables that were abstracted in constructing the closure.

In this way, the value of the let-bound variable is made available to Dedukti’s typechecker
via rewriting and S-reduction of the auxiliary definition application. In terms of the example
given above, this approach amounts to first defining the following closure definition for the
let value:

def letAux (n : Nat) : Nat := Nat.succ n

We then replace the let binding with its body, substituting the instance of the let-bound
variable with an application of letAux:

def letEx' (n : Nat) : Type :=
f (letAux n) Nat.zero

In general, this approach is clearly not perfect, however, as we would still need to duplicate
the auxiliary definition application everywhere the bound let variable appears. However, it
seems to be the best that we can hope to do when translating to a system that lacks native
support for let bindings.

Structure Projections

Recall that Lean allows for the definition of special structure-like inductive types which are
inductive types with a single constructor and no indices. For instance, recall the Point struct
from earlier, which generates projection functions that can be used to define, for example, a
summation function:

inductive Point where
| mk : Nat = Nat = Point
def Point.sum (p : Point) : Nat := p.x + p.y

Without structures, projections would have to be defined in terms of recursors. For instance,
we would have to define Point.x an Point.y as follows:

def Point.x (p : Point) : Nat :=
Point.rec (fun x _y => x) p

def Point.y (p : Point) : Nat :=
Point.rec (fun _x y => y) p

When applied to an explicit Point construction, these functions would have to reduce ac-
cording to the ordinary recursor reduction rules (explained in more detail in [Section 4.2)),
which is a bit less efficient than simply extracting the fields directly (as would be done by
way of projections).

2.3. THE SYNTAX-LEVEL TRANSLATION 53

Dedukti, of course, has no notion of inductive types nor structure types, and as such its
syntax does not allow for projections. However, we can define explicit projection function
symbols corresponding to each of the possible projections of a structure, with corresponding
rewrite rules that “simulate” the behavior of Lean’s projection reduction. For instance,
we might generate the following symbols and rewrite rules corresponding to each of the
projections of Point:

def prjd.... : (s:Point) — € (s z) Nat.
def prit,... : (s:Point) — € (s z) Nat.
[2,9] Prive.,. (Point.mk zy) < z.
[, Y] Priposn (Point.mk zy) < v.

In general, given a structure type S with universe parameters uy...uy, type parameters
(p1 : P1),...,(pn : P,) and fields (a; : A1) ... (am : An), we generate the following
projection symbols and rewrite rules for all 1 < i < m:

def prig : (ur:L) = = (up: L) = (oo |PZ) = = (oo 1P D)
= (s:[[Sup ... ugpr ... pullD) = A [a1/s 1, oo, ai—q/s.(i— 1)].
[..)prisly ... ey o P (Smk by ... lepy o pu fio fa) = fi

We use this symbol to define our translation of projection applications as follows, for any
s: Sl ... lypr ... pa

< S
= = Is]=

s.dl” = prib [Gls . Jals Ipal” .. Ipn

Note that this is another instance where our translation is not purely syntactic, as we re-
quire information from the type of s (namely, the universe level parameter and parameter
instantiations) that are not provided by the projection syntax alone.

Chapter 3

Universe Encoding

In this chapter, we will derive a representation and normalization scheme for Lean’s universe
levels in Dedukti that will allow us to reflect the rules [CGR-SORT| and [CGR-CONST]
onto our Dedukti translation/encoding. In particular, we will have to have our normalization
account for the equivalence relation /1 =~ {, between universe levels. Let’s start with a recap
of Lean’s universe level representation and semantics, and try to precisely identify the task
at hand.

Recall the interpretation function on Lean’s universe level expressions, that is then used
to define an equivalence relation on universe levels that figures into the definitional equality
rules [CGR-SORT] and [CGR-CONST]:

eval,(u) = o(u)
eval,(z) =0
eval,(s () = eval, () +1
eval,(max ¢ /') == ma (eval (0),eval, ()
eval,(imax ¢ (') = {O evalg(ig’) =0
max(eval,({),eval,(¢')) otherwise

Our task is to derive a Dedukti encoding (in the form of a rewrite system) that exactly decides
the equational theory ¢ ~ ¢5. However, how exactly do we go about designing an algorithm
that decides this relation in general? Obviously, deciding the relation would be trivial when
both terms contain no universe level parameters— in this case, the universal quantification
becomes irrelevant and we can simply implement a function that computes eval,(f) and
ignores the universe level parameter case, comparing the finally computed values.

With universe level parameters, however, things become more tricky, and we can no
longer reduce the problem to checking the syntactic equality of computed natural numbers.
At first glance, there is no obvious algorithm deciding ¢, ~ /5 in such a way that all possible
universe level parameter instantiations have been accounted for. One possible way about
this is to instead focus on deciding some subsumption relation ¢; < /5, defined as follows:

l < Uy <= Vo,eval,({1) < eval,(ls)
Now, we can observe the implication:

€1§£2/\€2§£1 - f]zgg

25

56 CHAPTER 3. UNIVERSE ENCODING

which reduces our problem to showing that: ¢; < /5 and ¢, < ¢;. This approach is in-
deed feasible, as a decision procedure for ¢; < /5 does exist and was implemented in Lean
3 for deciding universe level equivalence via a double inequality check as described above.
However, such an approach is not very applicable in our case, as we must fundamentally
rely on syntactic equality of beta-rewrite normal forms to deciding universe level equality —
specifically, due to our translation of universe level parameter instantiations as explicit argu-
ments in Dedukti, the universe equivalence check that is normally handled by a specialized
algorithm in Lean’s kernel becomes an ordinary instance of definitional equality checking
between terms in Dedukti.

As such, we need to revisit alternative possible methods for deciding equivalence between
Lean’s universe level terms, restricting ourselves in particular to methods that are based on
the computation of canonical normal form terms for representing universe levels. In doing
so, we will hopefully be able to arrive at some normal form representation and normalization
procedure that is compatible with a Dedukti encoding.

Normalization Criteria

Let’s start by trying to design some syntax Ly of normalized terms, along with an accom-
panying interpretation evalo(-)ﬂ This syntax and interpretation should ideally satisfy the
following two properties:

1. Every term in L should have some semantically equivalent corresponding term in Ly:

Theorem 3.0.1 (Sufficiency). For any ¢ € L, that there exists some ¢/ € Ly such
that, for any variable assignment o we have eval,({) = eval, (/).

This ensures that it should at the very least be possible to arrive at an equivalent term
in our normal form grammar for every term in our original grammar, following some
sequence of transformations.

2. We would like to ensure that our normal form is “minimal” in the sense that any two
semantically equivalent normal form terms are also syntactically equivalent:

Theorem 3.0.2 (Uniqueness). For any (1, 0y € Ly, if {1 ~ {5 then {1 = (5.

This is a very useful property for our normal form grammar to have, since it allows us
to be sure that any semantics-preserving transformation from L to Ly must necessarily
arrive at a unique normal form. Precisely, we can state the following lemma:

Theorem 3.0.3. For any ¢1,0y € L, 0}, 05 € Ly, if {4 = 0, {5 = {}, and {1 = {5, then
0 =1,

Proof. From transitivity and symmetry of ~, we have ¢; =~ /¢, and the conclusion

follows from [Theorem 3.0.21 OJ

'Rather than defining a new interpretation function for different universe level grammars, we instead
take the approach of implicitly extending the domain of our existing interpretation function eval,(-) to
accept terms from newly defined grammars. This is convenient in particular, because it allows us to use the
same universe level equivalence operator (as previously defined in terms of eval,(-)) in stating equivalences
between universe level terms from different grammars.

3.1. ENCODING A PREDICATIVE UNIVERSE HIERARCHY 57

We will arrive at our normal form grammar Ly as follows. Starting from the grammar
L, we will progressively modify it, with each step guided by an analysis of whether our
current grammar satisfies the uniqueness property. If we can find some counterexample —
that is, a “redundant pair” of universe level terms that are syntactically distinct yet seman-
tically equivalent — we will use this to guide the definition a new grammar that is just as
expressive as the previous one while no longer exhibiting this particular redundancy, in this
way narrowing down the classes of equivalent level expressions at each step and hopefully
eventually arriving at a normal form grammar Ly for which we can prove the uniqueness
property. Fach successive modification we make to the grammar will be justified by showing
that the new grammar is just as expressive as the previous one, namely by addressing the
particular syntactic categories and corresponding interpretations that were removed/added
in the grammar modiﬁcationﬂ. Justifying every step in this way, we can be sure that we
finally arrive at a final normal form grammar that satisfies the sufficiency property.

3.1 Encoding a Predicative Universe Hierarchy

Let’s first consider the case of a level grammar without the imax operator, corresponding to
the level representation of a fully universe hierarchy in a predicative type system:

Lp = ¢ where

Ci=wu|z|s{|max {1 ly

with the following interpretation:

eval,({) + 1

max(eval,(f;), eval,(f2))

(0]
<
oY)
'_I
Q

—~
4]
(S

N— e N N

I

In determining a normal form for this simplified level representation, we will hopefully gather
some intuition on how our normal form should look for the impredicative case.

3.1.1 Deriving a Normal Form

Starting from the grammar Lp and its interpretation, we check if our desired uniqueness
property holds by searching for a counterexample, in the form of a redundant pair of universe
level terms — namely, two syntactically distinct universe level terms that have the same
interpretation under all possible substitutions. We can identify one as follows:

s (max ¢ () ~max (s (1) (s {3)

2Formally speaking, we prove sufficiency at every step by induction on the size of level expressions,
omitting the trivial cases of syntactic categories/interpretations that were preserved from one grammar to
the next. For conciseness of presentation, however, we will not describe our proofs in this level of formal
detail, instead justifying the transformation by simply showing how any instance of a level term no longer
expressible in the original grammar is expressible as some equivalent term in the new grammar (assuming
by induction that any level subterms are already equivalently expressible in the new grammar).

58 CHAPTER 3. UNIVERSE ENCODING

This means that, given any term ¢ € Lp, we can convert it into an equivalent term ¢ € L}
where a max application never appears as an argument to s. Specifically, we have restricted
Lp to the following grammaif};

Lp = { where
Uo=ulz|sl

0= 1{"|max {1 (o

From the above equivalence, we can be sure that L} is sufficient w.r.t. Lp, because the RHS
is still expressible in L.

There are a few more redundancies in our grammar that we have to address. For in-
stance, the interpretation of the max operator is both symmetric and associative, yielding
the following equivalences:

max (max {1 () {3 ~ max ¢; (max {5 (3)

max ¢, 5 ~max ¥y {;
Additionally, the grammar allows for redundant max applications:
max { (~(

To eliminate these three redundancies, we can add a new operator to our grammar, max$,
that takes as argument a set of so-called “sublevels”, denoted using the symbol w, which are
level terms that do not include the max operator, and whose interpretation is simply the
maximum of all of the interpretations of the elements of its set argument:

L% = { where
wi=ulz|sw

¢ ::=maxS {wy,wo, ...}

We know from the above equivalences that this grammar is sufficient w.r.t. L} (and thus
w.r.t. Lp) as well.

There is still one last redundancy we have to address, however. While we are guaranteed
that there are no duplicates in the sublevel set argument to maxS, there is still the possibility
of sublevels being redundant w.r.t. other sublevels in the set, in terms of certain sublevels
being “subsumed” by other sublevels. For instance, we can observe the following equivalences:

maxS {s z,z} ~ maxS {s z}
maxS {s u,u} ~ maxS {s u}
maxS {s u,s z} ~ maxS {s u}
In general, we can define the “subsumption operator” < on sublevels that indicates whether

or not the LHS sublevel is exceeded by the RHS sublevel for all possible universe level
parameter instantiations.

w) <wy <= Vo, eval,(w;) < eval,(ws)

3We could also think about applying the equality in the other direction, but this would entail restricting
our grammar such that an application of s can only ever appear as at most one of the arguments to max,
which is somewhat complex to express and probably not what we want.

3.2. ENCODING AN IMPREDICATIVE UNIVERSE HIERARCHY 59

We can use this operator to eliminate the above redundancies by adding a “pairwise incom-
parability” predicate on sublevel sets in our grammar, requiring that no sublevels in a set
are subsumed by any other sublevel in the same set:

L}, = { where

Si={w,wy,...} Yw,w eSS w#uw = wLd
wi=ulz|sw

¢ ::=maxS S

Lastly, supposing that we interpret eval,(maxS {(}) := 0, we have the following redun-
dancy:

maxS {z} ~ maxS {0}

We can resolve this simply by requiring that any constant sublevels are nonzerolz_f], arriving
at our final grammar L}:

» = {l} where

Ue=ul|sz|sl

Si={w,wy, ...} YwweS wtW = wLd
(= maxS S

This final grammar closely resembles that of Blanqui [8], which itself derives from a grammar
originally introduced by Genestier [18|, and it is one that finally allows us to prove the
uniqueness property’}

3.2 Encoding an Impredicative Universe Hierarchy

Introducing the imax operator into our level grammar makes things more complicated. imax
has a more complex semantic than max, in particular with its interpretation being asymmetric
(and hence non-commutative) w.r.t. it arguments, and non-associative. In the process of
refining towards a normal form grammar, we will have to discover new equalities that account
for the interaction of imax with other symbols. While in the predicative case, we were able
to find a normal form grammar that used a subset of the original grammar to represent
sublevel terms, in this case, we will see that the presence of imax complicates things to the
extent of requiring us to construct a new syntax and interpretation for sublevel terms.

3.2.1 Deriving a New Normal Form

As in the predicative case, we will proceed in our derivation of a normal form grammar for
impredicative universe level terms by describing redundancies in our grammar in the form of
semantically equivalent universe level terms, using them to refine our grammar and hopefully

4 Alternatively, we can require that the argument of maxS is a non-empty set, with maxS {z} being the
canonical representation of zero. With our approach, we use maxS) instead as the canonical representation
of zero.

>The actual proof of this property is similar to (and simpler than) that which we will show later for the

normal form grammar that we derive for the impredicative case (see [Section 3.2.2).

60 CHAPTER 3. UNIVERSE ENCODING

eventually arrive at a normal form grammar respecting the uniqueness property. Much of
the derivation presented below, as well as the uniqueness proof found in draws
heavily from recently work by Géran [19], who first described and implemented a rewrite
system for computing a normal form for universe level terms featuring an imax operator,
and with whom the author collaborated in adapting this implementation for the translation
from Lean to Dedukti. Proofs of the lemmas described below relating to the equivalence of
level terms and the sublevel subsumption conditions can also be found in this work.

Extracting max

As before, we can pull instances instances of max out of s:

Lemma. For all ¢1,¢y € L,
s (max ¢; (5) ~max (s {1) (s ls)

To try to arrive at a similar normal form grammar where max can only appear nested within
another max, we follow the intuition to try the same in the imax case, extracting max when it
appears nested within the arguments to imax. We have to separately consider each argument,
arriving at the following equalities:

Lemma. For all /1,035,053 € L,

imax (max {; (5) {3 ~ max (imax ¢; (3) (imax (5 (3)
Lemma. For all /1,405,053 € L,

imax /1 (max (s (3) ~ max (imax ¢, ¢5) (imax ¢, (3)

We can now proceed as we did in the predicative case, introducing a maxS operator and
defining our level grammar with a category of sublevel terms w as follows:

L' = ¢ where
wi=ulz|sw|imax wy wy

¢ ::=maxS {wy,ws,...}

Restricting the imax Grammar

The presence of imax in our sublevel terms results in some additional redundancies that
we will need to address. Let’s analyze the interactions of imax with the other symbols of
our grammar, and try to derive some equivalences that will allow us to restrict as much as
possible the ways in terms involving imax can be constructed, while maintaining the same
level of expressivity.

Firstly, if z is the second argument to imax, the imax application always evaluates to 0
(regardless of the universe level parameter assignment):

Lemma. For all w,

imax w z~ 2z

3.2. ENCODING AN IMPREDICATIVE UNIVERSE HIERARCHY 61
On the other hand, z is the first argument to imax, the imax application always evaluates
to its second argument:
Lemma. For all w,
imax z w < w

When an s application is the second argument to imax, it has the same semantics as the max
operator:

Lemma. For all wq, ws,
imax w; (s wo) ~ max wi (s wy)
Consider, however, the case where an s application is the first argument of imax:
imax (s wy) we

It is not clear what kind of equality can be derived here: w, may still be relevant in evaluating
the term to 0, so we can’t simplify it to an expression using max instead of imax as we did
before, leaving us seemingly “stuck” with the imax application in this case. A similar situation
seems to arise when we consider a nested occurrence of imax as the first argument:

imax (imax w; wq) ws

which also does not seem to be amenable to any kind of simplification. So, for now, we
accept both cases as valid constructions in our new grammar.

It is possible, however, to derive an equivalence when imax appears nested as the second
argument to imax:

Lemma. For all wq,ws,ws,
imax wy (imax wy w3) ~ imax (imax w; ws) (imax wy ws)

We can also derive the following general equivalence when an imax application appears as
an argument to s:

Lemma. For all wq, ws,

s (imax w; we) A~ max (s we) (imax (s wy) wo)

Deriving Custom Sublevels

So far, we have narrowed down our grammar to the following:

L? = (where

Ve i=82]|8 7
Yo = | 8 Y
VE= e [

w = |imax w u

¢ ::=maxS {wy,wo, ...}

That is, we have been able to restrict our sublevel grammar to terms of the following forms:

62 CHAPTER 3. UNIVERSE ENCODING

k+1

e s z : a constant level with value k& + 1.

e s¥ u : a universe level parameter augmented by k.

e imax (imax ---(imax ("' z)u)---v) w: A sequence of nested imax applications
with only universe level parameters appearing as secondary arguments, with the in-
nermost nested imax application taking as its first argument some constant level with
value k + 1.

e imax (imax ---(imax (s* x) u)--- v) w: As above, but with the innermost nested
imax application taking as its first argument some universe level parameter augmented

by k.

Let’s introduce the notation imaxL v «*, with o* being a list of universe level param-
eters of non-zero length. Interpreting imaxL v [u,... ,v,w]ﬂ to represent the expression
imax (imax ---(imax v u)--- v) w, we can state our grammar equivalently as follows:

L* = (where

Ve i=82Z|8

Yo i=u| s

T E=%e |

o n=u| (o, u)

w = | imaxL vy o

¢ ::=maxS {wy,wo, ...}

Essentially, under some universe level parameter instantiation o, we interpret imaxL v o*
as the maximum of the streak of non-zero-assigned variables in the list o, starting from the
right, and including « in the case that all of them have non-zero assignments. If no such streak
exists (i.e. if the last universe level parameter is assigned to zero), then the interpretation
of the imaxL term is zero. Precisely defined, we have the following interpretation of imaxL:

eval,(imaxL v u) := eval,(imax 7y u)

eval,(imaxL v (a*,u)) := imax(eval,(imax v u),o(u))

Note that we have snuck an extra restriction into this grammar: as in the predicative
case, we assume that we cannot have a sublevel of the form z, fixing the interpretation
eval,(maxS (}) := 0, making maxS () our canonical representation of zero and eliminating the
redundancy maxS (S U {z}) ~ maxS S (when z ¢ 5).

This grammar, however, still does not quite get us all the way there, as we have the
equivalence imaxL 7 [v, w,v] &~ imaxL v [w,v]. The issue is that the consideration of earlier
variables in the list is “guarded” by the condition of all later variables being nonzero, making
it meaningless for a variable to guard itself. In general, if we ever have duplicate instances
of some variable in the list, we can always remove all but the last occurrence: if the variable
is assigned to zero, its value is irrelevant to the maximum anyways, and otherwise it would
have already been accounted for by a later occurrence. So, we modify the category a* to
enforce a non-duplication list predicate that ensures that this is the case:

*

o t=u| (afu) uéa”

6We use the notation [u,...,v,w] as a shorthand for the list construction (u,... (v, w)).

3.2. ENCODING AN IMPREDICATIVE UNIVERSE HIERARCHY 63

Thus far, we have only addressed redundancy between individual sublevels; however,
we should also account for redundant combinations of sublevels. We can observe one such
redundancy as follows:

maxS {imaxL v [v],imaxL v [u|} ~ maxS {u,v}

Here, the LHS sublevels imaxL u [v] and imaxL v [u] are incomparable, with neither being
subsumed by the other, and so we cannot eliminate either of them from the term. Therefore,
there a pairwise incomparability predicate on sublevel sets would not eliminate the possibility
of constructing the LHS term and be insufficient in enforcing a unique normal form. And yet,
we can still see that we are able to simplify both terms “in parallel”; if we consider each in
light of the other. Analyzing the problem more precisely, we can discern that it arises in the
“overloaded” nature of the elements in the list argument to imaxL: these elements both act
as guard parameters over previous elements, and also figure into the maximum themselves.
Is there a way to separate these responsibilities?

Let’s try narrowing things down to an even simpler sublevel grammar, introducing a new
sublevel representation imax$S v S, where S is a set of “guard parameters” such that if any
of them are set to zero, the sublevel evaluates to zero, otherwise evaluating to ~. Precisely,
we define its interpretation as follows:

0 dse S,o(s) =0

eval,(imaxS v S) =
(v5) {evala(’y) otherwise

Running with the example above, it seems that we can split imaxL u [v] into two components:
imaxS u {v} and imaxS u (. In this way, we make explicit the distinct semantic aspects of
the sublevel imaxL u [v]: namely that the level v is always considered by the outer maxS,
and the level u is only also considered if v does not evaluate to zero. We can similarly split
imaxL v [u] into the two components imaxS v {u} and imaxS w (). This leaves us with the
term:

maxS {imaxS v {v}, imaxS v (), imaxS v {u}, imaxS u 0}

Now, we can see that imaxS u {v} is subsumed by imaxS u), and imaxS v {u} is subsumed
by imaxS v (), allowing us to arrive at the simplified equivalent term:

max$S {imaxS u (), imaxS v (}

The question, now, is whether such a decomposition of imaxL sublevels to sets of imaxS
sublevels can be done in general. As a matter of fact, it can, as demonstrated by the following
theorem:

Lemma. For all £ € 7. U7, and all level parameters uy, ..., u,, we have:
imaxL ¢ [ug, ..., U] ~ maxS {imaxS ¢ {ui, ..., u,},imaxS uy {ug, ..., un},...,imaxS u, {}}

which can easily be verified by inspection.

64 CHAPTER 3. UNIVERSE ENCODING

Therefore, it is possible for us to restrict our grammar as follows:

L? = ¢ where

S = {uy,ug,...}
Ve i=82Z|8 7
Yo =U| S Y
V= Ye |

w = imaxS v S

¢ ::=maxS {wy,wo,...}

Refining the Guard Variable Set

We are now quite close to the final form of our normal form grammar. However there is
another redundancy to consider in our level representation, which can be seen in the following
equivalence:

imaxS u () ~ imaxS u {u}

Here, the presence of u in the guard parameter set does not affect the evaluation of the term.
We can also derive the following equivalence:

imaxS (s u) () ~ maxS {imaxS (s u) {u}, imaxS (s z) 0}

We require the additional sublevel imax$S (s z) {} in the maxS argument on the RHS in order
to preserve the equality of the respective evaluations in the case that wu is assigned to zero.
In general, we can derive the following equivalence:

Lemma. For any u € U and set S C U such that u & S,
imaxS (s u) S ~ maxS {imaxS (s* u) (SU {u}), imaxS (s* z) S}

What this means for our normal form grammar is that we must assume that whenever we
have a term of the form imaxS (s* u) S, we have u € S (as otherwise the above equivalence
would apply).

To ease the presentation of our final grammar, as well as the presentation of our compa-
rability predicate below, let’s define a couple more pieces of notation. We denote a “variable
sublevel” with the notation V k u S, interpreted as follows:

eval,(V k u S) := eval,(imaxS (s* u) S)

That is, V k u S represents a imaxS sublevel where the first argument is some variable u
augmented by k, guarded by the parameters appearing in S. We denote a “constant sublevel”
with, the notation C k£ S, interpreted as:

eval,(C k S) := eval,(imax$S (s* z) S)

C k S represents a imaxS sublevel where the first argument has a constant value evaluating
to k, guarded by the universe level parameters appearing in S.

3.2. ENCODING AN IMPREDICATIVE UNIVERSE HIERARCHY 65

Using this notation, we can describe our new grammar as the following:

L* = { where

Sy = {uy,ug, ...}
wei=C (k+1) 5,

wy =V ku (S, U{u})

W= W | wy
Sy = {wi,we,...}
{ ::=maxS S,

with & € N. Note that by specifying the grammar of constant sublevels as C (k + 1) S, we
have preserved the requirement from our previous grammar that they must be nonzero.

Deriving Subsumption Conditions

Our final task in constructing our normal form grammar is to add an incomparability pred-
icate on the elements of sublevel sets. As in the predicative case, this is necessary to ensure
that we do not allow for sublevels to be present in a sublevel set that are subsumed by
other sublevels, as their removal would result in an equivalent term, violating the uniqueness
property.

As before, this predicate makes use of a subsumption operator < that has the following
interpretation:

l < Uy < Vo,eval,({;) < eval,({s),

That is, ¢; is subsumed by ¢, when the evaluation of ¢; is less than or equal to the evaluation
of 5 under all possible parameter instantiations o. We could then enforce the requirement
that no terms are subsumed by other terms as a predicate on the definition of the syntactic
category of sublevel sets:

S, i=Hwi,wa, ...} Yw, W €S, wHW = wLuw

For our encoding, it is important that the relation ¢; < {5 corresponds to a function that
is amenable to an implementation as a rewrite system, so that we can effectively maintain
the incomparability predicate when rewriting level terms to their normal forms. We would
like to find a set of necessary and sufficient requirements on ¢; and /5 that are simple enough
to effectively allow us to decide whether ¢, < /¢y via a rewrite system. We derive these
conditions in the following lemmas:

Lemma. For allu e U, S, 5" CU and k, k' € N,
VkuSLCK S
Lemma. For all S,5" C U and k, k' € N,
CkS<CKS < S CSAkELSFK
Lemma. For allu e U, S, 5" CU and k, k' € N,

CES<VEuS «— SCSAE<K+1

66 CHAPTER 3. UNIVERSE ENCODING

Lemma. For all u,v’ e 4, S, S’ CU and k, k' € N,
VEkuS<VEKEJS — SCSAu=uNkE<K

As we will see in [Section 3.3.1] these subsumption conditions easily give way to a rewrite sys-
tem that enables us to compare sublevels for the purpose of maintaining the incomparability
predicate when computing normal forms.

The Final Grammar

At this point, we have arrived at the following normal form grammar for representing universe
levels in Lean:

Ly = ¢ where

Sy = {uy,ug, ...}
we=C (k+1) 5,

wy =V ku (S, U{u})

W= W | wy
S, i={w,wo, ...} Yw,w €S, wFwW = wLd
¢ ::=maxS S,

By making incremental changes to our grammar and justifying each step, we have shown
that this grammar satisfies the sufficiency property. However, for this to be a proper normal
form grammar that we can target in our universe level encoding, we need to be sure that it
also satisfies the uniqueness property. Upon inspection, it would seem that we can derive
no more redundancies in this representation. To be entirely sure of this, however, we would
like to prove that it is the case.

3.2.2 Uniqueness of the Normal Form

Having fully defined our normal form grammar Ly, let’s now proceed with the proof of
|T'heorem 3.0.2] For convenience, we start by establishing the following notation: for some
normal form term ¢ := maxS S,,, we use w € ¢ to indicate w € S,,. Our strategy for proving
the uniqueness property of our normal form grammar is to prove that for any two equivalent
normal form terms, the presence of a particular sublevel in the sublevel set argument to one
implies the presence of the same sublevel in the other. Formally, we can state this property
as:

VO, 0 e Ly A=l = Yw,u', wel < ' el

We start with the case of variable sublevels, first showing a relaxed property that we will
later strengthen:

Lemma 3.2.1. For all ¢,/ € Ly such that { ~ ¢,

VkuSel = VkuS el withSCJS

3.2. ENCODING AN IMPREDICATIVE UNIVERSE HIERARCHY 67

Proof. Our strategy for proving this will be to design a particular universe level parameter
instantiation that results in an interpretation of ¢ that “elicits” the existence a sublevel in ¢/
with the properties we seek.

Firstly, let’s establish the following notation to extract the constant value of a sublevel:

0: w— Nwhere O(VEkuS):=kand0(Cku):=k

To start our proof, let’s suppose that we have some V k u S € £. Suppose that we define a
universe level parameter instantiation o such that the interpretation of ¢ necessarily arises
from the sublevel V k u S:

1+ max {f(w),welorwel'} fv=u
o(v):=<¢1 ifveS\{u}
0 otherwise

Then, eval,({) = eval,(V ku S) = k+o(u). Since ¢ = ¢, we also have eval, (') = k+o(u).
For this to be the case, we must have that either:

e There is some C k' S" € ¢/ with k' =k + o(u).

e Thereis some V k' v S € ¢ with k' +0(u') = k+o(u) and " C SU{u} (as otherwise
eval,(V k'« §') =0).

It cannot be the first case because we chose o(u) > max {0(¢),£ € L or £ € {'}.

Therefore, it must be the second case, with ' = u We can therefore deduce that k&' = k.
Additionally, from the fact that our grammar restricts sublevels of the form V k u S to have
u € S, we know that SU{u} =5, s0o S’ C S, giving us our result. O

We can now strengthen this property as follows:
Lemma 3.2.2. For all ¢,/ € Ly such that ¢ ~ ¢,

VkuSel «— VkuSe/l

Proof. 1t suffices to show one direction of the proof, as the reverse direction is symmetric.
So, let’s assume that we have some V k£ v S € ¢. Then, by [lheorem 3.2.1] we we have
that there is some V k u S’ € ¢ with S’ C S. If S’ C S, then by [Theorem 3.2.1| again, we
have that there is some Vku T € £in ¢ with T C S" C S, so T C S. However, this is a
contradiction with our incomparability predicate as V k u T would then be comparable with
V k u S. Therefore, it must be the case that S = S, completing the proof. n

The next property to show is that any constant sublevel in ¢ in also necessarily present
in ¢

Lemma 3.2.3. For all ¢,/ € Ly such that { ~ ¢,

CkSel < CkSel

68 CHAPTER 3. UNIVERSE ENCODING

Proof. We show only the forward direction, with the backward direction following symmet-
rically. So, let’s suppose that we have some sublevel C k£ S € ¢, and proceed by induction
on the size of S.

For the base case, suppose S =). Let o be an universe level parameter instantiation such
that o(z) = 0 for all x € Y. Then, we know that eval,(¢) = k, as otherwise there must exist
some sublevel C k') € ¢ with ¥’ > k, which would be comparable with C & S. Therefore,
because ¢ ~ ¢, we have eval,({') = k. Because our grammar requires that sublevels of the
form C k S have k > 0, there must also be some sublevel C k S € /.

For the inductive step, we pick o such that:

o(u) = {1 ifues

0 otherwise

Then, we know that eval, () = k, as otherwise there must exist some sublevel C k' S’ € ¢
with S’ C Sand &' > k,or VK u S € ¢ with 8’ C S and ¥’ + 1 > k, both of which would
be comparable with C k S.

Therefore, because k > 0, we have that either:

e There is some C k' S’ € ¢/ with " C S and k' = k.
e There is some V k' u S" € ¢/ with 8" C S and k' + o(u) = k.

In the second case, because S’ C S and u € S, we have o(u) = 1. Therefore, k' = k — 1,
and by [Theorem 3.2.2| we have V (k — 1) u S" € ¢, which is a contradiction as this sublevel
is comparable with C k S.

In the first case, suppose S’ C S. Then, we can apply the inductive hypothesis to obtain
that there is some C kT € ¢ with T C S. However, this is a contradiction as such a sublevel
would be comparable with C k£ S. Therefore, S” = S, giving us our result. O

3.3 Implementation as a Rewrite System

While we have shown our normal form grammar to be theoretically sound for our purposes,
let’s move on to the task of designing a practical rewrite system that implements it, effec-
tively computing a S-rewrite normal form for level-typed terms that respects the restrictions
imposed by the grammar Ly.

3.3.1 Base Encoding

To get ourselves started with the task of deriving a rewrite rule encoding for computing uni-
verse level normal forms, let’s assume the following set of top-level symbols for constructing
universe levels:

L : Type.

def z : L.

defs : L— L.
defmax : L —- L — L.
def imax : L — L — L.
def v : Nat — L.

3.3. IMPLEMENTATION AS A REWRITE SYSTEM 69

This slightly differs from the final set of symbols that was first presented in [Section 2.2.4]
in that it lacks the inst symbol (to be introduced later), and variables are represented by a
single natural number via the constructor v, which is characteristic of a deep encoding. The
need for the inst symbol and the extra v argument will become apparent when we address
the instantiation issue, as described later in Note that all of these top-level
constructors are in fact defined symbols, as we will be defining rewrite rules on them to
enable the computation of their equivalent normal form representations.

Booleans

To define a few relations and branching operations that will be used by our universe level
encoding, we will use the following simple representation of booleans:

Bool : Type.
false : Bool.

true : Bool.

Natural Numbers

Recall the Peano representation of natural numbers in our encoding:

Nat : Type.
Nat.zero : Nat.
Nat.succ : Nat — Nat.

To represent the universe level parameter set arguments to our sublevels, we use ordered
lists of natural numbers, represented with the following type and constructors:

Syas : Type.
nilNat . SNat'

consyar : Nat — Syar — Syat.

Note that although we will refer to Sy.; as a “set”; it is isomorphic to an ordinary list of
natural numbers, with nothing to ensure that it behaves like a set — namely, there is no
guarantee that it does not contain duplicate elements, and there is no way to ascertain that
Dedukti will consider two Sets with the same elements but in different orders to be equivalent
to one another.

For this, we need to maintain certain invariant properties about our lists, using special
symbols to construct them with associated rewrite rules that ensure they do not contain
duplicates and are always sorted in increasing order. In doing so, we can check whether or
not two level parameter set encodings are equivalent by simply checking syntactic equality

70 CHAPTER 3. UNIVERSE ENCODING
of their normal forms. We start by defining a comparison function on natural numbers:

CMP : Type.
1t : CMP.
eq : CMP.
gt : CMP.

def cmp,,, : Nat — Nat — CMP.

[| cmpy,, Nat.zero Nat.zero <> eq.

[| cmp,,, Nat.zero (Nat.succ) < 1t.
[| cmpy,, (Nat.succ _) Nat.zero — gt.
[

n,m| cmp,,, (Nat.succ n) (Nat.succ m) <> cmpy,, n m.

Note that these operators are linear in the size of the natural numbers involved: this is of
course far from ideal, but for practical purposes it shouldn’t matter very much because there
are often only a few universe levels in the context at a time when typechecking Lean defi-
nitions, which will carry over into our translation, which assigns indices to level parameters
starting from zero.

To help us maintain that Sy.. are always ordered and without duplicates, we define
an addy.; operator that adds a number to a set, avoiding duplication and maintaining the
ordering of the underlying list representation. This makes use of a casesg,,, operator that
branches based on the cases of a natural number being less than, equal to, or greater than
another natural number:

def casesg,,, : CMP — Syt — Spat — Shat — Shat-
la] casesg,,, 1ta — a.
[b] casesg,, eq b _ < b

[c] casesg,, gt ¢ — c

def addy.; : Nat — Syar — Syat-
[n] addyas M Nilyas <> CONSyap 7 Nilyas.
[n,1,m] addy.s m (consy, nl) —
casesg,, (cmpy,, n m)
(consyas 1 (addyas m 1))
(consyas n 1)

(consyas m (consyag [n)).

We will ensure that we only ever use this operator (rather than using consy,, directly) to
construct Sy,. terms. addy.. implements linear search to maintain the sorted order, which
again is not ideal but perhaps acceptable at the small scales on which it will be applied.

We also define a few more operations on Sy, that we will find useful in subsumption-
checking:

3.3. IMPLEMENTATION AS A REWRITE SYSTEM 71

e A “set merge” operation on Sy,; that allows us to simulate taking the union of two
natural number sets by adding all of the elements of one to the other:

def UNat : SNat — SNat — SNat'
I:” UNat nilNatl (_> l

[l1,1,n] Uyay (consyas l1 n) lo > Uyay I3 (2ddyas 1).

e An operator that checks whether or not one set is a subset of another one, using a
membership operator:

def casesgyo; : CMP — Bool — Bool — Bool — Bool.

(rewrite rules for casesgeor)

def Eyue ¢ Nat — Syae — Bool.
| Ewar _ nily,, <> false.
n,m,l] €yay n (consy, ml) —

casesgye1 (cmpy,, n m) false true (Eyay n l).

def Cyat ¢ Syat — Syazr — Bool.

| Chas nilyey <> true.

(n,1,I'] Cyas (consyay nl) ' —
and (€yar n 1) (Cyae 1 1).

e An operator that checks whether or not two lists are equal in terms of both being
subsets of one another:

def Eqy,, : Svat — Shat — Bool.
(l1,0o) Eqyae 11 b2 > and (Cyay {1 12) (Char b2 1h).

Lastly, we define a lexicographic order on Sy, via the operator LTg,,,:

def LTEg,.,, : Syat — Swat — Bool.

[| LTEs,,, nilyss = <> true.

[| LTE,,, (consys,s) nily,, <> false.
[n,m,ly,l5] LTEg,,, (consy., n l1) (consy,, m ly) —>

Casespee1 (Cmpy,, n m) true (LTEg,, /i [2) false.

def LTg,,, : Shat — Syaz — Bool.
[ll,lg] LTg,.. {1 I < and (]-_.'I']'E:E,'Nat 1 lz) (not (EqNat l lg))

This ordering will be used to help us establish a total order on sublevels, which will be used
in our representation of sublevel sets described below.

72 CHAPTER 3. UNIVERSE ENCODING

Sublevels

We represent sublevels with the static constant symbols V and C:

Q : Type.
V : Nat — Nat — Syat — .
C : Nat — Syat —

As the maxS operator takes a sublevel set as its argument, we need to define sets of sublevels,
in a similar fashion to what we did with sets of Nats:

Sq : Type.
Ili].Q : SQ
consg : 2 — Sq — Sq.

For convenience, we also define a constructor for normal form level terms defined using
singleton sublevel sets:

sgl : Q— L.

[s] sgl s < maxS (consg s nilg).

We similarly define an addg symbol that adds elements to sublevel lists, preventing
duplication and maintaining a sorted order. For this, we define a lexicographic comparator
cmp, on sublevels, which uses the previously defined LTEg,,, symbol for comparing the Sya:
arguments to the sublevel constructors:

def cmp, : Q — Q — CMP.
(rewrite rules for cmpg)
def addg : Sq — Q — Sa.

(rewrite rules for addg)

However, w.r.t. the lists representing sublevel sets, ensuring that they are always sorted
via some canonical order is not the only invariant that we would like to maintain. We also
need to ensure that they respect the pairwise incomparability predicate we enforce on our
normal form grammar. So, we start by defining a subsumption relation <g between sublevels

3.3. IMPLEMENTATION AS A REWRITE SYSTEM 73

directly based on the previously derived subsumption conditions:

def <y.r : Nat — Nat — Bool.

[n,m] <yaz M M <> caseSpe (CmMpy,, 7 M) true true false.

def =y, : Nat — Nat — Bool.

[n,m] =yas MM <> casesp, (Cmpy,, n m) false true false.

def <o : 2 —) — Bool.
I <o (V__)(C_) o
false.
1, lo,n,m] <q (Cnl) (Cmly) —
and (gNat I ll) (SNat n m)
[l1,lo,n,m] <q (Cnl) (Vm) —
and (Cyas o 1) (Syas 1 (Nat.succ m)).
I, lo,n,myx,y] <qg (Vnal) (Vmyly) —
and (Cyay o 11) (and (=yar = Y) (Syar 1 (Nat.succ m))).

Then, we define a new set insertion function maxadd that maintains the pairwise incompa-
rability predicate by not inserting any sublevels that are subsumed by some other sublevel
in the set, and replacing any sublevels that are subsumed by the newly inserted sublevel:

def iteg, : Bool — So — Sq — Saq.
[t] iteg, truet <> .
[f] ites, false f — f.

def subs_addg : Sq — Q0 — Sq.
[w] subs_addg nilg w <> consg w nilg.
[w,w’, 1] subs_addg (consq w') w —>
iteg, (<q w ')
(consq W' 1)
(iteg, (<o W' w)
(subs_addg [w)
(addq (subs_addg [w) w')).

Now, if we are careful to only ever use this function when adding a sublevel to a set, we
are guaranteed to only ever construct sublevels sets that satisfy the pairwise incomparability
predicate.

74 CHAPTER 3. UNIVERSE ENCODING

3.3.2 Deriving a Normalizing Rewrite System

To finally construct our normal form terms, we define a maxS function taking a sublevel set
as an argument and producing a normal-form level term:

maxS : Sq — L.

We now need to define the rewrite rules for our top-level universe level term constructors
that enable us to arrive at an equivalent term in our normal form grammar. To do this,
we might consider attempting to directly convert into rewrite rules each of the equivalences
that we derived in as we progressively modified our level grammar. However,
these equivalences were really only useful in helping us arrive at our normal form grammar,
and proving the sufficiency property; they are not well-suited to be converted directly into
rewrite rules for computing normal form terms.

Specifically, they would not observe the confluence property. For instance, if we were to
take this approach, we would define the following rewrite rule, corresponding to the equality
we derived to pull max out of s applications:

la,b] s (max a b) < max (s a) (sb). (r)

At the same time, however, we would also need to define a rewrite rule on max that yields
a normal form term assuming that both arguments have been already normalized. We can
define this by “eliminating” on the second argument, defining the nilg case as follows:

[[1] max (maxS /;) (maxS nilg) <> maxS . (r2)
This gives rise to the following critical pair:

s (max (maxS ;) (maxS nilg)) <> max (s (maxS /1)) (s (maxS nilg)).

s (max (maxS /) (maxS nilg)) <> s (maxS l;).

These terms cannot be joined without some rewrite rule matching on s (maxs ...).

In order for our rules to be confluent, they must match on terms of type L on the
basis of the normal form representation: namely, they must always expect level terms to
be applications of maxS (in the style of the rule defined on max above, but defined on all
top-level constructors). Therefore, we have to derive a new set of equivalences to base our
rewrite rules on. These equivalences must account for the interactions of the top-level L
constructors imax, max, and s with normal-form subterms headed by maxS. To this end, we
define the following composite L + Ly grammar (with the expected interpretation):

L* = { where

Sy = {ug,ug, ...}
we=C (k+1) 5,

wy =V ku (S, U{u})

W= wWe | wy

Sy i={wp,wa, ...} Vu,w €S, w#W = wLuw
l, :=maxS S,
l.::=1imax {, 0} |max ¢,) |s €, |z |vu

=14, | L.

3.3. IMPLEMENTATION AS A REWRITE SYSTEM 75

Note that imax, max, and s with maxS take terms from the category ¢, — corresponding to
terms of the normal form grammar Ly — rather than /. This is in line with the kind of
equalities we would like to derive to help us design our rewrite rules. When matching, these
rules must assume that that any level arguments are already in normal form, as otherwise
they could result in non-confluence (as demonstrated above).

So, our goal is to derive equalities that effectively eliminate the category [; from the
grammar L* above. These equalities will hopefully all correspond to easily implementable
rewrite rules, allowing us to define a rewrite system that transforms terms from the grammar
L directly to the grammar Ly.

To ease the presentation of the derived equivalences on this grammar, we introduce the
symbol maxL, taking a list of level terms from the grammar L* as an argument, with the
following interpretation:

eval,(maxL [|) :=0
eval,(maxL (¢ :: 1)) := max(eval,(/),eval,(maxL [))

which gives us the following equivalence:

Lemma 3.3.1. For all ¢4,...,4,, we have:

maxL [(q,...,0,] ~max {1 (max {5 (...(max ¢,_1 {y,))))

Eliminating imax

Let’s start by eliminating imax from our grammar. We start by considering the most general
case, when both arguments to imax are maxS applications to sets of arbitrary size. We can
derive the following equivalence:

Lemma. For all wy,...,w, and ¢,
imax (maxS {wy,...,w,}) ¢ ~maxL [imax (maxS {wi}) ¢,...,imax (maxS {w,}) (|
It also turns out that we can make a similar simplification to the second argument:

Lemma. For all wy,...,w, and ¢,
imax ¢ (maxS {wi,...,w,}) ~ maxL [imax ¢ (maxS {w;}),...,imax ¢ (maxS {w,})]

Taken together, these equalities mean that we can now assume that both arguments to imax
are maxS applications to a singleton sublevel set. They are implemented by the following
rewrite rules:

def imax_auxg : Q@ — Q — L.

def imax_aux, : Q@ — L — L.

[w] imax_aux, w (maxS nily) <> max$S nilg.

[w,w',] imax_aux, w (maxS (consq w'l)) —>

max (imax_auxg w ') (imax_aux, w ().

[(] imax (maxS nilg) ¢ — /.
[w,[,¢] imax (maxS (consq wl)) { —

max (imax_aux, w /) (imax (maxS) /).

76 CHAPTER 3. UNIVERSE ENCODING

Note that rather than using a symbol corresponding to maxL directly, we make use of
instead, rewriting to a sequence of nested applications of 1vl.max (because in the
event that q is not sublvl.nil, the rule will apply again to the second argument to 1vl.max
on the the RHS). We have to define two intermediate symbols, imax_auxL and imax_aux,
in order to ensure termination. This is necessary because, for instance, the following rewrite
rule results in non-termination:
[w,[, (] imax (maxS (consq wl)) { —
max (imax (max$S (consg w nilg)) ¢) (imax (maxS [) {).

While this rule correctly implements the equality derived above, it would be able to infinitely
apply to itself, as the LHS matches the first argument to 1vl.max on the RHS. To finally
eliminate imax from our grammar, we are now left to consider how to deal with the case of

imax being applied to two maxS applications to singleton sublevel sets — that is, terms of the
form:

imax (maxS {w;}) (maxS {wy})

In our encoding, we represent terms of this form with the imax_auxs operator, which we
declared above as the following symbol:

def imax_auxg : Q — Q — L.

Our goal is to derive rewrite rules for imax_aux that allow for the computation of a normal
form. We consider in turn each possible pair of constructions on the sublevels ¢; and /5,
deriving equalities that eliminate the use of the imax symbol.

Lemma. For all £,k € N, u,v € Y and S, 5" C U,
imax (maxS {V k u S}) (maxS {V k' v S'}) ~ max (maxS {V k u (SUS")}) (maxS {V k' v S'})
Lemma. For all £,k e Nyuel and S, 5" C U,
imax (maxS {V k u S}) (maxS {C k' S'}) ~ max (maxS {V k u (SUS")}) (maxS {C k" S'})
Lemma. For all £,k € Nand 5,5 C U,

imax (maxS {C k S}) (maxS {C k' S'}) ~ max (maxS {C k£ (SUS")}) (maxS {C k' 5'})
Lemma. For all k, k' € N, u € U, and S, 5" C U,
imax (maxS {C k S}) (maxS {V £’ u S'}) ~ max (maxS {C k (SUS’)}) (maxS {V k' u S'})
These lemmas correspond to the following set of rewrite rules:

(11,12, n,m,u,v] imax_auxg (VI un) (Vigvm) —
max (sgl (V (Uyas {1 l2) un)) (sgl (V iy v m)).
(1,12, n,m,u] imax_auxg (V [un) (Cly m) —
max (sgl (V (Uyas U1 l2) un)) (sgl (C Iy m)).
11,12, n,m] imax_auxg (C l; n)) (Cly m) —
max (sgl (C (Uyas [1 o) n)) (sgl (C ly m)).
(11,12, n,m, x] imax_auxg (C Iy n)) (Vip xm) —
max (sgl (C (Uyas l1 o) n)) (sgl (V Iy x m)).

3.3. IMPLEMENTATION AS A REWRITE SYSTEM 7

Eliminating s, z, v, and max

Let’s now look at how to eliminate the s symbol from our grammar. We can observe the
following equivalence:

Lemma. For all wq,...,w,,
s (maxS {wi,...,w,}) ~maxL [s (maxS {wi}),...,s (maxS {w,}),s z]

So, we can restrict s to apply to a maxS with a singleton sublevel set — that is, terms of
the following form:

s (maxS {w})
We can derive the following equalities for both possible constructions of sublevel /:

Lemma. Forall ke N, u e Y and S C U,
s (maxS {V k u S}) ~ max (maxS {V (k+ 1) u S}) (maxs {C 1 (})
Lemma. For all k € Nand S C U,
s (maxS {C k S}) ~ max (maxS {C (k+1) S}) (maxS {C 1 0})

In both cases, the additional term maxS {C 1 0} is needed to preserve the interpretation
when some element of S is set to zero, in which case the value of the term is exactly one.
Implementing this as a set of rewrite rules, we obtain:

def s_aux : Sq — L.
] s_aux nilg <> sgl (C nily,; (Nat.succ Nat.zero)).
1, k,1'] s_aux (consq (C k1)) —
max (sgl (C (Nat.succ k) 1)) (s_aux [).
1,2, k,l'| s_aux (consq (VEkzl)l') —
max (sgl (V (Nat.succ k) x 1)) (s_aux l').

Again, we have applied [Theorem 3.3.1]in deriving our rewrite rules from the above equations.
Eliminating z is fairly straightforward, as our interpretation eval,(maxS ()) :== 0 gives us
the equivalence z ~ maxS (), which becomes the following rewrite rule:

] z < maxS nilg.

We can eliminate level variables by observing the equivalence v ~ maxS {V 0 u {u}} for all
u € U, which is implemented as the rewrite rule:

[u] vu < sgl (V Nat.zero u (conSy,s % nilyay)).

Finally, let’s eliminate the max symbol from our grammar. Let’s suppose the existence
of some special union operator U* that eliminates subsumed terms from the union of two
sublevel sets. Precisely, for all sublevel sets S,.S’, the following conditions apply:

Vw,w' e SU* S w#uW = wguw
max (maxS S) (max$S S') ~ maxS (SU* S

78 CHAPTER 3. UNIVERSE ENCODING

By [Theorem 3.0.2) SU*S” must be the unique sublevel set equivalent to max (maxS S) (maxS S’)
satisfying the incomparability predicate, so it remains to implement a set of rewrite rules
computing S U* S’. We can do this by adding the elements of S to those of S” one by one,
skipping any elements from S that are subsumed by some element of S’. We can do this
with the help of the subs_addg function described earlier:

[[] max (maxS /) (maxS nily) <> maxS [
[w, 1, l5] max (maxS [;) (maxS (consq w lp)) <>

max (maxS (subs_addg [; w)) (maxS ly).

Having eliminated imax, s, z, v, and max from the grammar L*, we no longer need
the /. syntactic category, and the grammar reduces to an equivalent of Ly. Each of the
rewrite rules we have designed preserve the semantic interpretation of universe level terms,
while allowing us to arrive at terms of a particular normal form grammar where syntactic
equality exactly corresponds to semantic equivalence. The comparison of normal forms
computed by our encoding’s rewrite rules effectively decides equality between universe level
expressions directly translated from Lean via top-level constructors corresponding to Lean’s
native pseudo-constructors for universe level terms, thus completing our deep encoding of
universe level equality in Dedukti.

Instantiation?

While the deep encoding described above is quite convenient for a representation of sets of
universe level parameters, it doesn’t really allow for any form of instantiation. For instance,
consider the following universe-polymorphic definition:

def poly.{u} : Sort (u + 1) := Sort u

This would translate as:

def poly : (u: L) — U (s (v Nat.zero)).
] poly < (u:L)=>($ (v Nat.zero)).
By itself, this translation is well-typed in Dedukti. However, notice that we completely
ignore the universe level parameter argument that was included by our translation of constant
declarations (as described in [Section 2.3)) to allow for the possibility for instantiating universe
level parameters via g-reduction. This is problematic, because if we try to use this constant
elsewhere, say, in the context of a constant that does not use level parameters, it becomes
ill-typed.
For instance, consider the Lean definition below:

def polyInst : Sort 1 := poly.{0}

This would have the following Dedukti translation:

def polyInst : U (s z).
| polyInst < poly z.

where the level-instantiated constant reference poly.{0} becomes the explicit application
poly z. However, this term is ill-typed, on account of the dependency of the type of poly

3.3. IMPLEMENTATION AS A REWRITE SYSTEM 79

on its universe level parameter u being lost in the Dedukti translation: the inferred type
of poly z is U (s (v Nat.zero)) while the expected type is U (s (z)), and the two do not
normalize to the same form. So, how can we modify our universe level encoding to enable
the kind of S-reduction-based universe level parameter instantiation that we were originally
planning for when we initially defined our translation of constant declarations?

A Shallow Encoding?

Something we could attempt here is to rely on Dedukti’s own bound variables to represent
universe level parameters, rather than using a natural number encoding. This approach
can be thought of as a “shallow encoding”, characterized by the universe level parameter
constructor, which now takes a term of type L as its argument:

defv : L — L.

with our translation of universe level parameter instances applying this symbol to the bound
variable representing the parameter, rather than a natural number encoding of the parame-
ter’s canonical index.

Correspondingly, we would then change the types of V and C to take level sets, rather
than natural number sets, for the guard parameter set arguments:

2 : Type.
V : Nat — Nat — S; — Q.
C : Nat — S — Q.

The rewrite rule for v, for instance, would then become:
[l v { — sgl (V Nat.zero ¢ (consy ¢ nily)).

Under such an encoding, our translation of poly becomes:

def poly : (u:L)— U (s (vu))
[| poly — (u:L)=> (5 (vu)).

from which it seems at least feasible to possibly implement some form of instantiation, as
the universe level parameter variable u s now used in the type and body of the translated
constant declaration.

However, when it comes to actually expressing these universe level parameter sets, all of
the machinery we have previously developed for maintaining ordered lists of natural num-
bers to represent sets are not adaptable to creating ordered lists bound variables of type L
representing universe level parameters, specifically because there is no way to define a total
ordering on bound variables in Dedukti. What’s more, there is nothing in the type of the
argument to v above to suggest that its argument is necessarily a bound variable to begin
with, as opposed to an arbitrary term of type L.

So, our best bet here is to rely on a certain special feature of Dedukti: its ability to
define special binary symbols that act modulo associativity and commutativity (A/C) —
that is, the order or their arguments is irrelevant when the kernel decides whether two terms

80 CHAPTER 3. UNIVERSE ENCODING

constructed using these symbols are equal, or when performing pattern matching. We declare
A /C symbols using the following syntax:

defac f [T].

which declares that f is an A/C operator with type T"— T — T. We could use this to
define a list-like type representing sets of terms of type L as follows:

Sp @ Type.
IlilL . SL-
singleton; : L — Sp.

defac uniony, [S].

Because uniony, is marked as A /C, Dedukti will effectively disregard the order of the elements
appearing in a construction of S, of size greater than one. For convenience, we can also define
a symbol that mimics a normal list construct operator, but which is actually defined using
uniony:

def consy : L — S — Sr.
[(,S] cons; ¢ S < union; (singleton, /) S.

Now, via the A/C unionj, symbol, Dedukti is able to use A /C equivalence to identify the
symbols ¢; and ¢y below:

x : L.

y : L.

def t; : L.

] t1 < consy x (consy y nily).
def ty : L.

] ta < consy y (consy x nily).

Additionally, Dedukti allows us to perform matching modulo A/C, enabling, for instance,
the definition of a duplicate-removal rule that allows the symbols t3 and t; below to be
identified:

[S,5’] uniony S (uniony S S') <> uniony S S’

def t5 : L.
[| t3 < consy x (consy y (cons; x nily)).
def t4 : L.

[| t4 < consy x (consy y nily).

Here, the fact that the second occurrence of x is not directly adjacent to the first occurrence
does not prevent the rule defined on union; from applying, thanks to matching modulo
A/C.

A/C equality and matching are in fact sufficient for our purposes here, allowing us
to recover a set-like representation for both level and sublevel sets, defining uniony and
singleton, symbols for constructing sublevel sets analogous to union; and singleton,

3.3. IMPLEMENTATION AS A REWRITE SYSTEM 81

defined above. But, how exactly do we go about instantiation now, which was our original
motivation for doing a shallow encoding? Returning to our example from before, the trans-
lation of the polyInst declaration remains the same as shown above. When typechecking
its 0-reduction rewrite rule, however, things get ugly pretty quickly: using the typing rule
[ALL|, we instantiate u in the type declaration of poly with z, leaving us with a term of

type U (s (v z)), with the argument normalizing| to a universe level term of the form:

maxS(consq
V Nat.zero (maxS nilg) (cons, (maxS nilg) nily)

(consq (C (Nat.succ Nat.zero) nily) nilg))

where the normal form of z has been instantiated within the universe level parameters that
would have appeared in the arguments to V prior to instantiation. This is distinct from the
normal form of s z:

maxS(consg

(C (Nat.succ Nat.zero) nily) nilg)

In order to be able to unify these two terms, we would have to define some complex
rewrite rules to pull the instantiated variable out of the normal form, essentially undoing
the normalization in the process, obtaining some term isomorphic to s z, and performing
normalization again on this term. This is probably much more trouble than it is worth. On
top of this, modulo A /C equality /matching as implemented in Dedukti is not well-optimized
and quite expensive for typechecking, and we have observed it to scale very poorly in practice.

So, to conclude, while a shallow encoding may initially seem to be quite a natural ap-
proach to enabling universe level parameter instantiation, it is not a very practical option,
and implementing a confluent rewrite system for it is in fact quite a bit more complex than
it might seem at first glance. It would be preferable to find another way to address the
instantiation issue.

3.3.3 A Hybrid Encoding

Our deep and shallow encoding approaches have mutual benefits and drawbacks that arise
fundamentally from our representation of universe level parameters in the encoding. This
may make us wonder: could it be possible to combine these two approaches into one, affording
convenient instantiation while also avoiding the drawbacks associated with the use A/C
symbols? One obvious thing to try is to combine the use of canonical indices and bound
variable references in our universe level parameter representation:

def v : Nat - L — L.

We can keep our sublevels as they were in the deep encoding (using ordered lists of
natural numbers to represent sets), along with a similar normalizing rewrite rule for var:

[u] vau <> sgl (V Nat.zero u (consya, ¢ nilyay)).

The constructor v now carries two arguments that are used for two separate purposes:
a canonical index argument of type Nat that is used to establish an order on universe level

"For simplicity, we do not normalize consg applications to applications of the A /C uniong symbol.

82 CHAPTER 3. UNIVERSE ENCODING

parameters (that is only useful within the context of typechecking the constant that a level

term originally appears in), along with an argument of type L to be instantiated with a bound

variable representing a universe level parameter that can used for instantiation purposes.
Now, poly translates to:

def poly : (u:L)— U (s (v Nat.zero u)).
| poly — (u:L)=> (s (v Nat.zero u)).

which is well-typed in Dedukti. However, the translation of polyInst is still ill-typed. The
issue is that applying the rewrite rule on v effectively ignores the second bound variable
argument, which is instantiated with a level expression that we need to replace the v ap-
plication with in order to normalize to a form that is identical to what we saw with our
deep encoding. What we need is a way to preemptively replace an application of v with
its second argument whenever this argument represents an explicitly instantiated universe
level parameter (as opposed to a simple bound variable, as it would appear in a translated
constant symbol’s type declaration and definition). We can achieve this with a new symbol
inst to mark universe level parameter instantiations, along with a new rewrite rule on v:

inst : L — L.
[(] v _ (inst {) — /.

Now, we must be careful in our translation to ensure the invariant that any universe level
parameter-instantiating levels are wrapped with inst. This is achieved by our translation

of constants references, as we described it in [Section 2.3}
|CAly, ..., 0, }|T = C (inst |f1]1) ... (inst |[4,]L)
With this approach, the translation of polyInst now becomes:

def polyInst : U (s z).
| polyInst <> poly (inst z).

However, there’s still one more issue here that causes this translation to be ill-typed in
Dedukti. The new rewrite rule on v is non-confluent with the previous one, arising from the
following critical pair:

v u (inst £) — /(.

v u (inst) — sgl (V Nat.zero u (consSyas © nily,y)).

To fix this, we need some way to tell Dedukti to “prefer” to instantiate a level variable
whenever possible. We can achieve this by making these two rewrite rules sequential, which
is achieved in Dedukti by placing them one after the other, with the first rule lacking a
trailing period:

(/] v. (inst {) — (

[ul vu <> sgl (V Nat.zero u (conSya, ¢ nilyas)).

3.3. IMPLEMENTATION AS A REWRITE SYSTEM 83

Dedukti will attempt sequential rewrite rules in the order that they are declared, in this case
causing it to always attempt to replace a v application with its instantiating level argument
before normalizing it in the style of a deep encoding. This approach has proven to work
well in solving our instantiation issue, while maintaining the ability to efficiently represent
universe level parameter sets in our encoding without resorting to the use of Dedukti’s
expensive A/C symbols.

Chapter 4

Encoding Lean’s Definitional Equalities

In the previous chapter, we designed an encoding for Lean’s universe levels that allowed us
to transfer Lean’s notion of equality between universe level representations to our Dedukti
translation. This encoding allowed us to decide a particular equational theory that is defined
on a very specific meta-theoretical construct. When it comes to general object-level terms
in Lean, however, there are additional notions of equality that we will need to account for in
our translation. In this chapter, we address the encoding of Lean’s definitional equalities in
Dedukti: recall from that definitional equality in Lean consists of an equational
relation on terms that is “built-in” to Lean’s type theory, that Lean’s kernel makes use of in
identifying types during typechecking. In designing our translation from Lean to Dedukti,
we will have to address these definitional equalities, ensuring in particular that our soundness
property holds, where we must ensure that our translation preserves the well-typedness of
our input, where the well-typedness of a term in Lean may depend on the use of certain
Lean-specific definitional equalities.

4.1 Deriving Definitional Equality Encodings

In order to show that our soundness property (Theorem 2.3.1)) holds, we must show that
typing is preserved by our translation in the case of the source term having been typed by
[CONV]|. We can state this as the following theorem:

Theorem 4.1.1. f A A/ B: Sort {, A t:A and A+ A= B, then |A|Z 7 [{|Z:
|B|Z.

Recall that Dedukti features an analogous rule to [CONV] in its own type theory:

AF?T.U:Type AF"T=U ArF"t:T

[CONV]
AFt:U

As we have by induction that A 7 ||A||Z, ||B||= : Type and A F~ [¢|Z : ||A||Z, it remains
to show that A F~ ||A||= = ||B||=. For this, it suffices to show that definitional equality
of types is preserved by the term-level translation, which can be stated as the following
theorem:

Theorem 4.1.2. For all terms A, B such that A= A, B : Sort /f and A A= B, we
have |A|Z F7 |A|Z = |B|Z.

85

86 CHAPTER 4. ENCODING LEAN’S DEFINITIONAL EQUALITIES

This property would follow immediately from the fact that our translation preserves
the definitional equality of arbitrarily typed terms, which can be expressed by the following
theorem concerning the soundness of the translation w.r.t. the respective definitional equality
judgments:

Theorem 4.1.3 (Defeq-Soundness). For all terms ¢, s such that A ¢, s : Tand A t = s,
we have |A|Z F7 [t|Z = |s| 7.

Lean’s definitional equalities are utilized implicitly by typechecking — there is nothing in
the structure of proof terms themselves that directly indicate what particular definitional
equalities are relevant to their typing. The situation is similar in Dedukti, in that the
rules of S-reduction, rewriting, and syntactic equality are applied implicitly by Dedukti’s
typechecker. In defining our encoding, we will have to reconcile the differences in the two
systems’ definitional equality judgments — in particular, Lean includes a number definitional
equalities that are not present in Dedukti, whilst Dedukti features rewriting.

If we wish to establish a “one-to-one” translation from Lean syntax to Dedukti syntax
(modulo our theory encoding), we will necessarily have to make use of Dedukti’s rewrite rules
in order to compensate for Dedukti’s lack of equivalent judgments in its own theory. As such,
our translation will have to produce rewrite rules in the course of translation, extending the
set of rewrite rules Y with new ones adapted from particular definitional equality rules
found in Lean. In this way, we make the use of these rules “semi-explicit” — they are not
reflected in the translation of individual subterms, but can they still be found explicitly
represented in our initial encoding and the translation of the input Lean™ constant context.

However, we will also have to face the fact that Dedukti’s rewrite rules are not exactly
sufficient to cover every possible definitional equality implicitly used by Lean’s kernel. When
rewriting falls short, we will have no choice but to make these rules explicit in the translation
itself, by “annotating” subterms in such a way that the use of these definitional equalities in
conversion becomes explicit. As we will see in [Chapter 5| this can be done via the use of
Lean’s cast operator (an explicit form of conversion) and the equality types Eq and HEq.
Encoding Lean-specific definitional equalities directly as rewrite rules works best in the case
that the definitional equality in question has a certain “directionality” that can allows it to
be interpreted as a special kind of reduction. When it comes to rules that are of a more
“undirected” nature, however, we will see that this approach does not work as well, so the
use of explicit type conversions may become necessary.

However, making type conversions and the associated definitional equalities explicit in
the translation comes at the cost of larger and less readable output, and will therefore be a
last-resort approach that we will only attempt if a direct encoding does not seem possible.
It is in attempting to establish [Theorem 4.1.3| that we will refine our theory Lean™ to
some “maximal translatable sub-theory” that can be directly translated to Dedukti via a
one-to-one syntactic translation of subterms, along with a context-level translation encoding
various definitional equalities via rewrite rules. This refinement process may require possibly
dropping definitional equalities from Lean™’s definitional equality judgment if they do not
seem amenable to a Dedukti encoding. As we assess the possibility of designing Dedukti
encodings for each of Lean’s definitional equality rules, we will see there are in fact a few
cases where we do end up needing to do this.

To prove [['heorem 4.1.3] we will consider each of Lean’s definitional equalities in turn,
showing for every judgment with a conclusion of the form A F a = b that its premises imply
|A|Z 7 |a]Z = [b|Z. Our proof will be within the context of [Theorem 4.1.3| and [Theo-|

| 4.1. DERIVING DEFINITIONAL EQUALITY ENCODINGS 87|

frem 2.3.1] where we proceed by induction on the size of typing derivations and definitional
equality derivations. Therefore, by the inductive hypothesis, for any typing premise of the
form A F ¢ : T we can assume |[A|™ F~ [¢|~ ¢ ||T||] and similarly for any definitional
equality premise of the form A a = b we can assume |A|~ F7 |a|= = || 7.

4.1.1 Congruence Identities

Recall that Lean features a set of definitional equality rules referred to as “congruence iden-
tities” that allow two terms of the same root syntactic form to be identified based on the
definitional equality of their corresponding subterms, corresponding to each of the syntactic
variants of lean expressions. We would like to show that definitional equality is preserved
by our translation in the case of definitional equality in Lean by each of these congruence
identities. Unfortunately, however, Dedukti has no similar congruence identity rules in its
own theory that we can easily map onto in our proof, having only the following singular rule
based on the syntactic equality of reduced forms:

Al—gt<—>2u1 AI—‘_’8<—>;u2 AF7
AFt=s

To try to close the gap between the theories, let’s start by trying to derive a similar set of
rules in Dedukti that closely correspond to a subset of Lean’s congruence identities.

— " DEQ]

Dedukti’s Congruence Identities

It is in fact possible to show that the following set of rules can be derived for Dedukti’s
definitional equality judgment:
A f=f AFa=d AFT A=A Az:AF7e=¢

[CGR-APP-DK] [CGR-LAM-DK]
AF? fa=fd AF(z:A)=>e=(x:A)=>¢

AF?A=B Axz:AF"D=D
[CGR-ALL)|
AF?(z:A) - D=(x:B) - D'

These rules are analogous to Lean’s congruence identities [CGR-APP], [CGR-LAM], and [CGR-
ALL]. [CGR-APP]| can be shown to follow thanks to the confluence requirement on the Dedukti
typing context. Because rewrite rules cannot apply to A-functions or function types in Dedukti,
|[CGR-LAM-DK] and [CGR-ALL-DK] both follow easily since replacing each of the corresponding
subterms in the LHS and RHS with their common normal forms (derived from the inductive hy-
pothesis applied to the premises) results in unique and syntactically identical normal forms for the
left- and right-hand sides.

We will use the lemmas [CGR-APP-DK]| and [CGR-LAM-DK] to prove Defeq-Soundness in
the case of definitional equality by each of Lean’s congruence identitieﬂ W.r.t our translation,
[CGR-APP-DK] also gives us the following property, which will be useful to us:

Lemma 4.1.4. For all terms 7T, S such that A = T,S : Sort ¢, if |A|Z F7 |T|Z = |S|Z, then
[AIZ EIT= = ([S]1=

Proof. Our as-type translation is defined such that ||T||= := € || |T|= and ||S||= := € [£|1 |S|Z,
8o it remains to show that A F7 € |¢|; |T|= = € |[¢|p |S|Z, which follows from the assumption
|A|Z 7 |T|Z =|S|Z and [CGR-APP-DK]. O

!This is justified because [Theorem 4.1.3|is a sub-proof of the inductive proof of [Theorem 2.3.1
2As we will see, we do not actually need to use [CGR-ALL-DK] on account of our PTS encoding of

function types via the symbol II.

88 CHAPTER 4. ENCODING LEAN’S DEFINITIONAL EQUALITIES

Application, Function, and Function Type Congruence
Let’s start with the case of application congruence via the rule [CGR-APP], recalled below:

AFf=f Ara=d
AFfa=fd

[CGR-APP|

Because Lean applications have a shallow encoding in Dedukti, [CGR-APP]| in Lean corresponds
directly to [CGR-APP-DK]:

Lemma 4.1.5. f AF f=gand A a=b, then |[A|Z F7 |f a|Z =g b|Z.

Proof. By the inductive hypothesis, we have |A|Z F7 |f|Z = |¢g|= and |A|Z F7 |a|Z = |b|Z.
Therefore, because our translation is defined such that |f a|=" = | f|Z" |a|= and |g b|= = |g|=" |b|Z,
we have A F7 | f|Z |a|Z = |g|= |b|=" following from [CGR-APP-DK]|. O
Lambdas
Recall the rule for A-function congruence, |[CGR-LAM]:
AFA=A Az:Abe=¢
AF fun (x:A) => e= fun (z: A') => ¢

- [CGR-LAM|

|[CGR-LAM]| corresponds directly to the property |CGR-LAM-DK] in Dedukti, since (like with
applications) Lean function terms are translated directly to Dedukti function terms via a shallow
encoding.

Lemma 4.1.6. f AF A= Band Ajz: AF t = s, then |A|Z F7 [fun (z : A) => ¢|T
fun (z: B) => s|~.

Proof. By the inductive hypothesis, we have |A|Z F7 |A|Z = |B|Z and |A,z : A|Z F7 [t|Z

|s|=". By [Theorem 4.1.4] we also have |A|Z 7 ||A||Z = ||B||Z.

Therefore, because our translation is defined such that

|fun (z: A) => t|= = (z: [|A]|Z) => |¢|Z
and
fun (z: B) => 8|2 = (x: |BI2) => |s|=,

our conclusion follows from |[CGR-LAM-DK]. O

Function Types

The proof is a bit different for the case of function type congruence via the rule [CGR-ALL|, recalled
below:

AFA=A Axz:Ar-B=DB
AF(z:A)» B=(x:A") -+ B

[CGR-ALL]

While the structure of the rule is quite similar to that of the rule [CGR-LAM], recall from [Section 2.3
that the actual encoding of Lean’s dependent function types in Dedukti is based on an encoding
that uses the special symbol II. Therefore, function type congruence in Lean™ becomes an instance

of application congruence in Dedukti (in fact, we do not actually need to use the property [CGR-
ALL-DK]).

4.1. DERIVING DEFINITIONAL EQUALITY ENCODINGS 89

Projections

Let’s now consider the case of projection congruence via the rule [CGR-PROJ|:

AFE=S 10GR-PROY]
AbFti=s.i

As we encode projections in Dedukti using special projection functions, this reduces to an instance
of application congruence in Dedukti.

Lemma 4.1.7. Suppose S is a structure-like inductive type with k£ universe level parameters, n
parameters and m fields. For all terms s,s’ such that A F s, : S ¢y ... lx p1 ... p, and
AF s=¢', we have for all 1 <1i <m that |A|Z F7 |s.4|Z = |52

Proof. Recall from that the projection s.i would be translated to Dedukti as follows:

’Sl‘? = pI'_]fg lél\L wk‘L ’pl‘? ’pn’t__) ’3‘(__)
Therefore, we are tasked with proving the following:
|AIZ 7 pris [l - Ll = o el T 1sIZ = prds e - Gl I s (el 182
which follows from the inductive hypothesis and [CGR-APP-DK]. O

Sorts
Recall that Lean’s definitional equality judgment includes the following rule for comparing sorts:

L=/
Al Sort ¢ = Sort ¢

|CGR-SORT]

Recall also from that our translation of Lean’s sorts to Dedukti involves the use of a
special symbol $, which is applied to a translation of the sort’s universe level:

|Sort 4|77 =35 ||,

As such, [CGR-SORT] in Lean becomes an instance of application congruence in Dedukti, with
Dedukti being able to identify universe level translations thanks to our universe normalization

encoding and [Theorem 3.0.3

Constants

Recall that Lean includes a similar definitional equality for checking the equality of level-instantiated
constant references. If a constant symbol C takes n level parameters, we have the following defini-
tional equality:

!
n

A Cllr,.. 6y =CAl, ... 0}
Recall also our translation of constant references that was defined in [Section 2.3t

L=t b, ~/

[CGR-CONST]

|C{t1,...,0,}|7 := C (inst |f1]1) ... (inst [fo]r)

Here, similarly to the case of [CGR-SORT], the equality check performed between each pair of
instantiated levels becomes a comparison of the normal forms of the translations of these levels in
Dedukti, which is assured to succeed via our universe normalization encoding and [Theorem 3.0.3

90 CHAPTER 4. ENCODING LEAN’S DEFINITIONAL EQUALITIES

4.1.2 Proof Irrelevance
Recall the rule for proof irrelevance in Lean:
AFP:Prop AkFp,q:P
AFp=gq

[P1]

As Dedukti does not have any built-in notion of propositional types, it also does not provide support
for any notion of proof irrelevance, or anything similar to it, in terms of a definitional equality rule
that identifies terms based on their typing. So, we will have to try to find a way to explicitly encode
|PI] within Dedukti, if possible.

Encoding Proof Irrelevance via Erasure

Unlike the congruence rules, where definitional equality depended on the definitional equality of
subterms (or level expressions), definitional equality by proof irrelevance depends on the definitional
equality of the types of the terms being compared. In Lean’s kernel, it is implemented by checking
the definitional equality of the inferred propositional types of both proof terms being compared.

This creates a particular difficulty for our translation, since it is not possible to define rewrite
rules in Dedukti that are conditional on typing. In order to have such an encoding possibly work,
we will need to provide this typing information ourselves, as part of the translation, say, by defining
a tuple constructor Erase for proof terms that carries a proof along with its type:

def Erase : (P:Uz) —ezP —ezP.

We could then define our translation such that, for all proof terms p such that A F p : P and
Al p: Prop:

?
|p|~ :=Erase |P|” |p|~",

with the translation | - |70 defined mutually with | - | =, the only difference being that it does not
apply this transformation to its input (to avoid non-termination).

For two distinct proof terms A F p: P and A F ¢g: @, we would now need to reduce the problem
of comparing Erase |P|Z |p|= and Erase |Q|Z |¢|=" to a comparison of their translated proof
types |P|=" and |Q|=". We could do this by defining a new symbol Erased, together with a rewrite
rule on Erase that performs proof erasure:

def Erased : (P:U z) — ez P.
[P] Erase P _ <> Erased P.

In this way, Erased P takes the place of Erase P p as the “normal form” of a proof term p with
type P. By [CGR-APP-DK] and the inductive hypothesis, which gives us A 7 |P|Z = |Q|Z, we
can then show that we satisfy Defeq-Soundness in the case of definitional equality by [PI].

However, the use of erasure creates issues for the definition of rewrite rules relating to recursor
reduction that we need to address. Consider the following inductive proposition:

inductive T (f : Bool =+ Prop) : f Bool.true - Type where
| mk (p : f Bool.true) : T f p

This generates a recursor with the type:

-- T.rec.{u} {f : Bool + Prop} {p : f Bool.true} {motive : T f p + Sort u}
-- (mk : motive (T.mk p)) (t : T f p) : motive t
#check T.rec

4.1. DERIVING DEFINITIONAL EQUALITY ENCODINGS 91

that reduces as follows:
example : QT.rec f p mtvm (@T.mk f p) = m := rfl

Converting this into a recursor reduction rule into a rewrite rule along the lines of what is described
below in [Section 4.2 we would require that the major premise is a constructor application:

[f,p,mtv,m] T.rec f pmtvm (T.mk f p) — m

However, with our erasure scheme, this rule is in fact ill-typed. The type of m is mtv (T.mk £
(Erased (f Bool.true))) (according to the translated type of T.rec), and yet the type of the
recursor application is mtv (T.mk f p), so Dedukti cannot verify subject reduction. We know
due to our translation that that any proof term must reduce to an application of Erased, but
the unification algorithm that Dedukti’s subject reduction checker uses has no awareness of this
Invariant.

To fix this, we might think to make the erasure explicit in LHS of the rewrite rule as follows:

[f,p,mtv,m] T.rec f pmtvm _ (T.mk £ (Erased (f Bool.true))) < m.

However, this still does not quite cut it — the expression £ Bool.true in the LHS violates a restriction
that Dedukti places on rewrite patterns, namely that they must be “Miller patterns”. In Miller
patterns, higher-order pattern variables (such as £ above) must only be applied to a list of distinct
pattern variables, and the pattern £ Bool.true does not obey this. Indeed, such a rule should not
go through as it results in non-confluence. If f is a particular defined symbol — for instance, the
constant function (_ : Bool) => True — the reduction of the application £ Bool.true may occur
before this rule is considered, at which point it can no longer apply.

To fix this, we can observe that since the argument to Erased appears directly in its type, its
value can be resolved by unification during subject reduction checking. So, simply replacing it with
“_” in the pattern gets around the non-Miller pattern issue, and Dedukti’s unifier is able to assign
the value of the placeholder to £ Bool.true:

[f,p,mtv,m] T.rec f pmtvm _ (T.mk £ (Erased _)) < m.

So, with this approach it would seem to be be necessary to encode every instance of a proof in the
LHS of rewrite rules as Erased _, with the hope that the placholder value will always be able to be
determined when necessary.

While seemingly within the realm of possibility, this erasure approach to encoding proof irrel-
evance comes at the cost of an important translation property: completeness. The typing of the
Erased operator is problematic, causing us to lose our completeness property, as we can construct
a proof of False in our encoding as Erased |False|~ (with False presumably not being provable
in Lean). If we were to include such a rule in our encoding, we would have to take extra care to
ensure that it is not exploited in any way when translating terms to Dedukti and exporting proofs
to other systems, and it would erode some of our confidence in the translated proofs. Besides, we
would have to assume the equivalent of the rewrite rule on Erase in our target theory, which already
somewhat amounts to assuming that the target theory has some degree of proof irrelevance, and
this may very well not be the case.

So, in light of these complications, for the moment let’s take a more conservative approach and
suppose that [PI] is not present in Lean™, deferring it to be handled in a preliminary translation
from Lean to Lean™.

4.1.3 7 Rules

Lean’s type theory includes some special definitional equality rules known as “7” rules, which extend
its definitional equality judgment in certain practical ways to allow for easier formalization. While

92 CHAPTER 4. ENCODING LEAN’S DEFINITIONAL EQUALITIES

all of the other definitional equalities can be seen as forming the basis of Lean’s definitional equality
judgment, defining “base equalities” that would otherwise be impossible to show, n rules can be
thought of as more “derivative”: they can be shown as provable consequents of other definitional
equalities or axioms.

Unit n
Recall Lean’s definitional equality rule for unit-n:

U unit-like AFt,s:U
AFt=s

[UNIT]

This rule bears close resemblance to the rule [PI], requiring a particular typing condition on the
subject terms. As such, it also does not readily give way to a Dedukti encoding, with all of our
previous attempts at designing an encoding of [PI] also failing to provide a satisfactory encoding of
[UNIT] in Dedukti for similar reasons. Therefore, we also assume [UNIT]| to not be present in the
theory Lean™, relying instead on its elimination via a preliminary translation from Lean to Lean™.

Struct-n

Recall the simplified struct-n rule that was presented in [Section 1.2.2

S struct-like AFt:Sp ... py
[ETA-S’|
AFt=Smkpy ... pp t.1 ... t.m

Let’s start by trying to encode this simpler rule, and see to what extent an encoding that we devise
for it can be adapted for the more general struct-n rule. Such an equality is characteristic of what
is known as “surjective pairing” which is a fairly well-studied topic, with results demonstrating that
it is not possible to design a confluent rewrite system that captures surjective pairing in an untyped
system. However, since Dedukti is typed, it should be possible to design a confluent rewrite system
encoding Lean’s struct-n.

We could first think about attempting to encode [ETA-S’| directly as a rewrite rule. Could we,
perhaps, define a rewrite rule that applies struct-n-expansion to any term typed as a struct? That
is, one that essentially applies the conclusion judgment of [ETA-S’| from left to right as a rewrite
rule? Unfortunately, this idea immediately runs into some problems.

Firstly, what exactly would the LHS of this rule have to look like? We have to be sure that it
is able to match on every possible instance of a struct-typed term. This effectively means that it
would have to match even in the case that the term is simply a bound variable, carrying no syntactic
information to indicate that it is of struct type. Consequently, the LHS of our rewrite rule would
have to simply be a pattern variable that places no syntactic constraints on the matched term. In
terms of our Point example, this rewrite rule might look something like:

[t] t — Point.mk (prj}g t) (Prj%' t).

We would correspondingly have to also declare Point.mk as a defined symbol, rather than a static
symbol (as we would normally do when declaring translated constructor types). However, such a
rule violates one of the basic restrictions Dedukti places on rewrite rules, as it lacks a defined symbol
as the application head of the LHS, and as such it is rejected by Dedukti’s syntax parser.
Additionally, even if Dedukti allowed for such a rule to be stated, it does not satisfy subject
reduction, as we do not know the type of t. While the type of ¢ could theoretically be determined
from the RHS, subject reduction in Dedukti works in the other direction, ensuring that the RHS
term is well-typed according to pattern variable typings derived from the LHS alone. If the subject
reduction checker could determine pattern variable typings that are only derivable from the RHS,

4.1. DERIVING DEFINITIONAL EQUALITY ENCODINGS 93

this would necessarily require that the LHS is only matched on conditionally when these typings are
observed to actually apply, as otherwise the rewritten term will not be well-typed. As mentioned
earlier, Dedukti does not offer support for conditional rewrite rules of this form — and besides, even
if it did, this rule would immediately result in non-termination, as the only restriction on the LHS is
its typing, which does not change as a result of rewriting, and so this rule could be infinitely applied.
We would need to additionally constrain the rule such that it does not match on applications of
Point.mk, and Dedukti also does not provide any way to specify “exceptions” to the applicability
of rewrite rules. So, we clearly need to think of another way to encode this rule within Dedukti.

Another option is to define the rewrite rule in the opposite direction — that is, we can declare
Point.mk as a defined symbol and add the following rewrite rule to our encoding:

[t] Point.mk (prjrl’oint t) (prjgoint t) — t.

Now, Dedukti’s subject reduction checker can determine that ¢ : Point from the LHS, which has type
Point as well, so the RHS validates as having the expected type of Point. Unfortunately, however,
using this rewrite rule results in non-confluence when combined with our standard encoding of
reductions rules in Dedukti (see . The problem arises from the possibility of erasing
explicit constructor application heads that are necessary to match on in recursor rewrite rules. For
instance, our standard reduction encoding for the Point.rec recursor would look like:

[m,x,y] Point.rec m (Point.mkxy) <> mxy.

Here, matching on an explicit constructor application is necessary to extract the field values needed
for the reduction. In combination with the struct-n rewrite rule, however, this results in the following
critical pair:

. . .1 .9 Point.mk .
Point.rec mtv m (Point.mk (Prjpyins t) (Pripoint £)) < Point.rec mtvmt.

Point.rec

Point.rec mtvm (Point.mk (prjéoint t) (prjgoint t)) m (prj%oint t) (prjgoint t)

As we will see in [Section 4.2] it is in fact possible to address this issue by defining a special rule for
recursor reduction on structs, rather than using the default encoding strategy for Lean’s recursor
rules.

So, in general, we define our encoding of struct-n as follows. Given some struct-like type S with
n parameters and m fields, we declare the constructor as a defined symbol and add the following
rewrite rule:

[t] Sk ()1 - (U)o (prigt) ... (pridt) — t.
Struct-n: The Actual Rule

While the rule [ETA-S’] presented above served well for a first introduction to struct-n in Lean that
helped us design an initial Dedukti encoding, recall that the actual rule implemented by the kernel
is a bit less directly adapted from struct-n-expansion, taking the form:

S struct-like AFt:Sp; ... pp, AFtl=a; ... Abtm=apn

[ETA-S]
AFt=Smkp ... pp a1 ... a;m

This rule is a bit more general than [ETA-S’], requiring that each of the constructor field arguments
are only definitionally equal to (rather than syntactically equal to) a corresponding projection of ¢.

Despite this difference, we can in fact show that the rewrite rule derived for [ETA-S’] still ensures
Defeq-Soundness in the case of typing by [ETA-S|. For this, we need to use the following property,
stating that any two terms having definitionally equal Dedukti translations also have reducts whose
translations are definitionally equal:

94 CHAPTER 4. ENCODING LEAN’S DEFINITIONAL EQUALITIES

Theorem 4.1.8. If AF t ~*t and A s~* s, then
A2 = (512 = A7 17 = 152
This property follows from Reduction-Soundness, which is described below in [Section 4.2]

Theorem 4.1.9. Suppose S is a struct-like inductive type with n parameters and m fields and
constructor mk. For all terms ¢ such that AF ¢:Sp; ... ppand AF t.1=aq,...,AF t.n = a,,

we have:
A7 F7 |t =|Smkp1 ... pnar ... am|”

Proof. Let t' and a] be the weak-head normal forms of ¢ and the a;. We then have that A
t.i ~* t'iand A F a; ~* @) for all 1 < ¢ < n. Via [RED] and the premises, it follows that
AF t'1=d,...,AF t.n = a), From the inductive hypothesis, we have |A|Z F7 |t.1|Z =
la1|Z .. |A|Z F7 |tn]|T = |an|Z, and so from it then follows that |A|Z F7
1.1 = |a}|Z, .. |A|Z B |2 = |al|Z, resulting in the same set of assumptions that we
originally had, but with ¢ and the a; replaced with the WHNF terms ¢’ and a.

So, without loss of generality, we can suppose that ¢ and all of the a; are in weak-head normal
form. If ¢ is a constructor application Smk p; ... p, b1 ... by, then [RED], [RPROJ|, and the
premises give us A F by = ay,...,AF b, = ay,, and thus |A|Z F7 01|27 = a2, .. |A|Z B2
|bn|=" = |an|= by the inductive hypothesis and with the result following by appli-
cation congruence.

Otherwise, suppose that ¢ is not a constructor application. As ¢ is in WHNF and not a con-
structor application, we know that each projection t.i cannot reduce via [RPROJ], and so for all 4,
AF7 il <—>;N prj’ t' for some term ¢’ such that A F7 |¢|= ‘—>Z,N t'. By the inductive hypothesis,
it follows that A F7 a; <—>ZN pr jiS t' for all 7. Therefore, we have:

= (

AF7|Smkpy ... ppay ... ap|” <—>Z> Sk [p1|= ... |pal” (prig t) ... (pri®t)
Thus, the LHS of the struct-n rewrite rule is able to match, giving us
AF7|Smkpy ... ppay ... am\‘j%;t/

and hence our result. O

Function 7

Recall the rule for function-n in Lean:

AF (fun (x:A) =>ex)=e [FUN-ETA]

Unfortunately, [FUN-ETA| does not seem to encodable as a rewrite rule in Dedukti. Attempting to
define a rule that directly applies n-expansion runs into similar problems that we observed in the
struct-n case:

fl1f = (x:A)=>f =z

Namely, such rule would have to match conditionally on typing, which Dedukti does not support,
and even if it did, the rule would be non-terminating. So, we might consider encoding the equality
as a rewrite rule in the reverse direction, defining a rewrite rule that performs “de-n-expansion” on
function terms:

fl@:A)=>fz = f.

However, such a rewrite rule would not be permitted by Dedukti, as this is not compatible with
Dedukti’s matching algorithm, which requires rewrite rules to match on defined function heads. As

4.2. DERIVING REDUCTION RULE ENCODINGS 95

we perform a shallow translation of Lean functions to Dedukti function via our PTS encoding, such
a rule would have be defined with a A-function on the LHS, which is not allowed in Dedukti. In
addition, the LHS a non-Miller pattern, as it applies the pattern variable f to the non-pattern-
variable x.

So, any possible encoding of function-n will have to rely on our translation itself. One approach
we might take is to explicitly n-expansion any terms of function type in our translation output.
However, as described by Genestier [18] this is in fact not sufficient, due to dependent types. Instead,
Genestier introduces the use of a special type annotation symbol that allows for the application of
rewrite rules simulating function-n. In our case, this might look something like the following:

defTyp : ((: L) = (T:U¥l) —elT—elT.

This symbol would have the following rewrite rules defined on it, effecting n-expansion in the case
of it being applied to a term of function type, and otherwise simply reducing to the original term.
This can be expressed in the following pair of sequential rewrite rules:

(01,02, A,B, f] Typ _ (1141 L2 AB) f < (z:€ly A)=>Typ ly (B (Typ {1 A z) (f (Typ &1 A 2)))
[t] Typ _t — ¢t

While this does make for a sound encoding, it is not a very practical approach, because the use
of Typ to annotate every output term with its type makes the translation output much larger and
more complex.
Alternatively, recall from that Dedukti provides native support function-n in the
following rule:
AF?f:(x:A) - B
AT (2 A) = fa) = f

This is allowed because function-n is a very common conversion present in many proof assistants,
and it is reasonable to expect many target systems to already support function-n, making an explicit
encoding in Dedukti unnecessary. The use of this identity in Dedukti’s typecheker can be enabled by
passing the command line option “-eta” to dkcheck. So, assuming that we are okay with restricting
export of our translated proofs to systems already supporting function-n, we can suppose that the
target Dedukti type theory features the rule [FUN-ETA], and we do not have to design any special
encoding of function-n in Dedukti.

[FUN-ETA]

4.2 Deriving Reduction Rule Encodings

Recall the rule for definitional equality via reduction in Lean:

AFt~*t Art=s
AFt=s

[RED]

This rule is a bit more involved than the previously considered definitional equality, as it makes use
of the separately defined reduction relation A ¢ ~* /.
Reduction-Soundness

So, let’s consider how to show Defeq-Soundness in the case of a definitional equality arising in Lean™
via [RED]. Analogously to our definition of Defeq-Soundness, we can define a “Reduction-Soundness”
property as follows:

Theorem 4.2.1. If At~ s, then A7 [¢|Z <—>Z |s| .

96 CHAPTER 4. ENCODING LEAN’S DEFINITIONAL EQUALITIES

That is, every single-step head-reduction in Lean™ corresponds to a valid reduction between the
translated terms in Dedukti. From this, we can prove the following via induction on the size of
Lean™ reduction sequences and the transitivity of <—>;:

Theorem 4.2.2 (Reduction-Soundness). If A t ~* s, then A F7 |t|Z <—>Z |s|=.
This property allows us to show Defeq-Soundness in the case of [RED] as follows:
Theorem 4.2.3. If AF t~*sand AF t=¢, then |A|Z F7 /|2 = |s|Z.

Proof. We have from [Theorem 4.2.2 that A F7 |¢t|= <—>Z |s|=". Let s’ be the unique normal form of
|s|=7, that is, A F7 |s|Z <—>2N s'. Then, we have A 7 [¢t|Z <—>;N s’. By the inductive hypothesis,

we have |A|Z F7 |t|Z = |[t/|Z, and so it follows that A F |¢/|Z <—>;N ', giving us our result. [

So, our task is to define our translation encoding such that every reduction rule in Lean corre-
sponds to a sequence of reductions in Dedukti. At first glance, this may seem like a trivial task: we
could simply directly translate the left- and right-hand sides of each one of Lean’s reduction rules
into the left- and right-hand sides of a corresponding rewrite rule in Dedukti. However, Dedukti’s
restrictions on how rewrite rules must be written may not allow for such an encoding in every case.
Additionally, Lean places conditions on how certain reduction rules can apply (in the form of typ-
ing premises on reduction rules) that are not necessarily syntactically enforceable using a Dedukti
rewrite rule, particularly when these conditions rely on typing information. As we will see, this
latter discrepancy in particular causes difficulties in our ability to encode certain rules in Dedukti.
As was the case when encoding definitional equality rules, we will have the leeway to eliminate from
our theory any reduction rules that prove difficult to express as rewrite rules in Dedukti, deferring
their handling to a preliminary translation step.

f-Reduction

Recall Lean’s S-reduction rule:

AF (fun (l‘ : A) => e) a ~> e[m/a] [BETA]
As our PTS encoding does a shallow translation of both A-functions and application terms, we

immediately have Reduction-Soundness in the case of [BETA| via Dedukti’s own [BETA| rule.

0-Reduction
Recall Lean’s rule for §-reduction:

A= (%;T) X contains C.{uy,...,u}, defined with value v
AFC{l, ..., I}~ vlfur/ly, ... un/ly]]

[DELTA]

As was described in [Section 2.3] our translation of constant declarations introduces additional
abstractions for each of the universe level parameters, with the references to these parameters
within the definition translating to bound variable references. Correspondingly, later references
to these constants translate to applications of the corresponding Dedukti constant symbols to the
translations of the level parameter instantiations. As such, we do not need to make any special
consideration of Lean’s universe level parameter instantiation in our translation as this simply
becomes an instance of S-reduction in Dedukti.

4.2. DERIVING REDUCTION RULE ENCODINGS 97

Projection Reduction
Recall the rule for structure projection reduction in Lean:

S structure-like

RPROJ
AF(Smkpr ... ppai ... G «.. Qy)d~a; [|

While is feasible to eliminate [RPROJ] via a pre-translation step in which we turn every instance
of a projection into an explicitly constructed recursor application corresponding to the projection,
this approach result in exactly the same kind of inefficiencies in typechecking the output of our
translation that Lean had sought to to avoid in introducing projections.

Instead, we directly transcribe |[RPROJ| into a Dedukti rewrite rule, generating the following
rules on our projection symbols prjfg:

Vi<i<n, [...]prjs € ... lppy .. pl (Smkly ... bypr oo p frooe fn) < fi

from which Reduction-Soundness in the case of [RPROJ]| can be shown to follow.

Recursor Reduction

Recall that the recursor rules follow a particular pattern determined by the inductive type and its
constructors, a general form of which is formally outlined by Carneiro [13] in the presentation of the
“¢ rule” for recursor reduction. The definition of this rule uses some extra notation for expressing
inductive types in Lean’s type theory, that we will not use here. As it turns out, we do not need
to make direct use of a generic ¢ rule in defining our translation, because of the fact that the rules
already come pre-computed for us when the Lean kernel generates the recursor for an inductive
type, which is very convenient for our translation as it means that we do not need to generate these
rules ourselves.

Specifically, in Lean’s metaprogramming framework, recursor rules are stored in the following
datatype:

structure RecursorVal extends ConstantVal where
all : List Name
numParams : Nat
numIndices : Nat
numMotives : Nat
numMinors : Nat
rules : List RecursorRule
k : Bool
isUnsafe : Bool

The field rules contains a list of RecursorRule objects that contain information on the recursor
rules for each of the inductive type constructors:

structure RecursorRule where

ctor : Name -- ctor this rule is for
nfields : Nat -- number of non-param args
rhs : Expr -- reduction function

The field rhs contains a A-function corresponding to the recursor reduction rule for the constructor
ctor. Recall in particular the example Vec inductive type and its associated recursor:

inductive Vec (T : Type) : Nat = Type where
| nil : Vec T Nat.zero

98 CHAPTER 4. ENCODING LEAN’S DEFINITIONAL EQUALITIES

| cons : (n : Nat) = Vec Tn =+ T = Vec T (Nat.succ n)
#check Vec.rec
recursor Vec.rec.{u} : {T : Type} -+ {motive : (a : Nat) = Vec T a = Sort ul} =
(nil : motive Nat.zero Vec.nil) =
(cons : (n : Nat) = (v : Vec Tn) = (¢t : T) =
motive n v - motive n.succ (Vec.cons n v t)) -
{n : Nat} =+ (t : Vec T n) - motive n t

The kernel will generate the following two reduction rules corresponding to each of the construc-
tors of Vec, which it will populate the RecursorRule.rhs field with:

-- "RecursorRule.rhs’ field for “Vec.mnil'’

fun T motive nil comns => nil

-- "RecursorRule.rhs’ field for “Vec.cons’

fun T motive nil cons (n : Nat) (v : Vec n) (t : T)
=> cons v t (@Vec.rec motive nil cons v)

When a recursor is reduced, these functions are applied to the corresponding arguments from the
recursor application, plus the extracted field values from the major premise constructor application.

For our translation encoding, we can interpret the bodies of these functions as the right-hand-
sides of a rewrite rule that takes a corresponding recursor application on the LHS, generating in the
case of Vec.rec the following rewrite rules:

[...] Vec.rec u T mtv nil cons Nat.zero (Vec.nil) <> nil.
[...] Vec.rec u T mtv nil cons (Nat.succ n) (Vec.cons v t)

< consnvt (Vec.rec u Tmtv nil cons n v).

Note that we have to take special care in translating the universe level parameter u in this rule.
Unlike in normal translation (e.g. while translating the body of a defined constant symbol), where
our translation would output the level expression 1vl.var 0 v according to our universe encoding,
we clearly do not want to do this in the LHS of the above rule. We want to be able to match on any
particular instantiation of the universe level parameter. Therefore, we simply translate the universe
level variable as a pattern variable, with the corresponding pattern variable being used on the RHS.

However, observe that the rewrite rules above introduce some complexity in the LHS pattern in
the recursor index arguments Nat .z and Nat.succ n. While in this example, this is quite innocuous,
in general doing so can lead to non-confluence as recursor indices can be arbitrarily complex functions
of the parameters and constructor fields.

For instance, suppose that we have the following inductive type:

inductive Vec' (T : Type) : Nat -+ Type where

| nil : Vec' T Nat.zero

| sgl : T » Vec' T (Nat.succ (Nat.zero))

| app : (nm : Nat) » Vec Tn =+ Vec Tm =+ Vec' T (Nat.add n m)

Here, the index argument is a particular function of constructor fields in the Vec.app case. Naively,

we would translate the recursor reduction rule for Vec.app construction as follows:

[...] Vec’.rec u Tmtv nil sgl app (Nat.add nm) (Vec’.app v v’)

> appanmv v’ (Vec’.rec u Tmtvnil appn v) (Vec’.rec u Tmtv nil appm v’).

4.2. DERIVING REDUCTION RULE ENCODINGS 99

However, this rule result in non-confluence, as we have the following critical pair:

Vec’.rec u Tmtv nil sgl app (Nat.add Nat.zero Nat.zero) (Vec’.app ~_ Vec’.nil Vec’.nil)

Vec’.rec . .
< appnmv v’ (Vec’.recu Tmtvnil appn v) (Vec’.rec u T mtv nil app m v?).

Vec’.rec u Tmtv nil sgl app (Nat.add Nat.zero Nat.zero) (Vec’.app _ _ Vec’.nil Vec’.nil)

Nat.add . . .
<> Vec’.recuTmtvnil sgl app Nat.zero (Vec’.app ~_ Vec’.nil Vec’.nil).

In the latter rewrite, we apply reduction to reduce Nat.add Nat.zero Nat.zero before attempting
to apply the recursor rewrite rule. The resultant recursor application cannot reduce, despite the
fact that the recursor application is well-typed with an explicit construction in the major premise.
since Nat.zero does not match the pattern Nat.add n m expected by the rule for Vec’.rec.

There is an easy way around this issue, however. Because the index arguments can always be
inferred from the particular construction in the major premise, we can in fact omit the index from
the LHS pattern, replacing it with a wildcard pattern and obtaining the following recursor reduction
rewrite rule for Vec’ .app instead:

[...] Vec’.rec u Tmtv nil sgl app _ (Vec’.app v v?)

> appnmvv’ (Vec’.recu Tmtvnil appn v) (Vec’.rec u Tmtv nil appm v?).
With this new encoding, we would similarly translate the rules of Vec as:

[...] Vec.rec u Tmtv nil cons _ (Vec.nil) <> nil.
[...] Vec.rec u Tmtv nil cons _ (Vec.cons v t)

< consnvt (Vec.rec u Tmtv nil cons n v).

Recall that Lean also allows for the definition of more complex inductive types, such as mutual
inductive types, where one inductive type is recursively defined with respect to another. Consider
again the mutual Even,;0dd inductive types, with the following recursors and associated recursor
reduction rules:

mutual

inductive Even : Nat -+ Type where

| zero : Even Nat.zero

| succ : {n : Nat} - 0dd n -+ Even (Nat.succ n)

inductive 0dd : Nat -+ Type where

| succ : {n : Nat} - Even n - 0dd (Nat.succ n)

end

-- Even.rec :

-- {mtv_e : (a : Nat) -+ Even a -+ Sort u}t + {mtv_o : (a : Nat) -+ 0dd o + Sort u} -+
-- mtvu_e Nat.zero Even.zero +

- ({n : Nat} + (a : 0dd n) + mtv_o n a = mtv_e (Nat.succ n) (Even.succ n)) -

-- ({n : WNat} - (a : Even n) =+ mtv_e n a + mtv_o (Nat.succ n) (0dd.succ n)) =+

-- {a : Nat} + (t : Even a) =+ mtu_e a t

#print Even.rec

-- 0dd.rec :

-- {mtv_e : (a : Nat) -+ Even a -+ Sort u} + {mtv_o : (a : Nat) -+ 0dd o + Sort u} -+
-- mtvu_e Nat.zero Even.zero +

- ((n : Nat) » (a : 0dd n) + mtv_o n a -+ mtv_e (Nat.succ n) (Even.succ n)) -

-- ((n : Nat) =+ (a : Even n) =+ mtv_e n a + mtu_o (Nat.succ n) (0dd.succ n)) =

-- {a : Nat} -+ (t : 0dd a) + mtv_o a t

100 CHAPTER 4. ENCODING LEAN’S DEFINITIONAL EQUALITIES

#print 0Odd.rec

-- recursor rules

example : Even.rec z succ_e succ_o Even.zero = z := rfl
example : Even.rec z succ_e succ_o (Even.succ n)

= succ_e n (0dd.rec z succ_e succ_o n) := rfl
example : 0dd.rec z succ_e succ_o (0dd.succ n)

= succ_o n (Even.rec z succ_e succ_o n) := rfl

The generation of these rules is a bit more complex than the generation of the rules for normal
inductive types. Fortunately, however, we again do not have to account for the particular rules
governing the generation of recursor rules for mutual inductive types, as these are precomputed for
us just the same in the RecursorRule.rhs field, which we use to directly encode a corresponding
Dedukti rewrite rule. The only special consideration we have to make in implementing our trans-
lation is that these rewrite rules are added only after we have declared all of the recursor types in
the mutual inductive block, which is necessary due to their mutual references.

K-Like Reduction

Recall the rule for K-like reduction in Lean:

K K-like AFKmkpi ...pp:Kp1 ... pni1 ... by AFt:Kmkpy ... ppi1 ... im IKLR]
AbFt~ Kmkpy ... py

For similar reasons as were described in in the context of struct-n, we cannot hope to
directly turn this reduction rule into a Dedukti rewrite rule. The LHS would have to be a variable
that we match on based on its type, which is something that Dedukti is not capable of.

In order to get around this limitation, we might reconsider some aspects of our previous idea
regarding proof erasure from making use of an Prf symbol that annotates proof terms
with their type (analogous to the Erase symbol):

def Prf : (P:Uz) —»eP —eP.

We can then be sure to have the translation always apply a Prf annotation to every translated proof
term. We would also want to define rewrite rules removing this annotation when we encounter a
constructor of an inductive predicate, in order to allow the recursor reduction rewrite rules described

in [Section 4.2| to go through. For instance, in the case of the translation of the propositional Or
type in Lean:

inductive Or (P Q : Prop) : Prop where
| inl (h : P) : Or P Q
| intr (h : Q) : Or P Q

we would define the following rewrite rules:

[P,Q,p] Prf (Or P @) (Or.inl p) < Or.inl p.
[P,Q,q] Prf (Or P Q) (Or.inr q¢) < Or.inr q.

Now, to encode the above rule, we could also define a rewrite rule on Prf taking terms of a
K-like inductive type with the expected indices to the unique constructor. For instance, for the

type Eq:

[A,a] Prf (EQ Aaa) < Eq.refl Aa.

4.2. DERIVING REDUCTION RULE ENCODINGS 101

While this approach works perfectly fine for this example, some difficulty arises when we think
about the more general case.
Suppose we have the following K-like inductive type:

inductive K (n : Nat) : Nat - Prop

| mk : Kn (Nat.add n n)

-- K.rec.{u} : {n : Nat} - {motive : (a : Nat) + K n a + Sort u} -

-- motive (n.add n) (K.mk n) + {a : Nat} = (t : K n a) -+ motive a t
#print K.rec

K-like reduction enables the recursor reduction to go through in the case of a generic parameter n:
theorem KLR_ex (k : K n (Nat.add n n)) : K.rec true k = true := rfl

It also enables the reduction in the case of a particular instantiation of the parameter n:

theorem KLR_ex_inst (k : K 1 2) : K.rec true k = true := rfl

However, how exactly do we go about defining a rewrite rule Prf in this case? Our first attempt
may be to encode it directly as follows:

[n] Prf (Kn (Nat.add n n)) < K.mk n.

However, the fact that the index of the output type of the unique constructor is a particular
function of the parameters is problematic. Specifically, here it results in non-confluence, as we have
the following critical pair:

Prf
Prf (K Nat.zero (Nat.add Nat.zero Nat.zero)) _ < K.mk Nat.zero.

Nat.add
Prf (K Nat.zero (Nat.add Nat.zero Nat.zero)) =~ <> Prf (K Nat.zero Nat.zero)

Unfortunately, this critical pair in unjoinable, because in the second term where we immediately
reduce the Nat.add application, the rewrite rule for Prf cannot apply, as it requires to match on a
Nat .add application in the second argument to K. It would seem that for this strategy to work, we
would necessarily have to define a conditional rewrite rule along the lines of the following:

[n,m] Prf (Kn m) _ — K.mkn|IF m =Nat.add n n.

This hypothetical rewrite rule would only apply if Dedukti is able to unify m with Nat.add n n,
thus ensuring subject reduction without the syntactic restriction of a Nat.add application on the
LHS.

However, Dedukti offers no way to define such conditional rewrite rules. Even if we could
define such a rule in Dedukti, it would complicate proof export as we would have to assume that
any target system also implements a similar conditional rewrite rule. What’s more, conditional
rewriting theory is not nearly as developed as standard rewriting theory, so it would be harder
to show theoretical results about our translation, like termination and confluence (for which some
automated tools exist, but are implemented for stardard rewriting theory).

Recall, however, that [KLR] is only relevant for recursor reduction with K-like inductive types,
so0 it is in fact equivalent to suppose the following reduction rule on recursor applications of K-like
inductive types:

K K-like AFKmkpr ...pp:Kp1 ... ppi1 ... 0y AFt:Kpr ... ppip ... zm[

KLR-REC]
AFKrecpr ...pp _ fi1 ...imt~f

102 CHAPTER 4. ENCODING LEAN’S DEFINITIONAL EQUALITIES

So perhaps, rather than taking the approach of proof annotations, could we instead attempt to
encode the typing requirement directly into the recursor reduction rule instead? In the case of K,
we might end up with a rule like this:

[...] K.recn _ f (Nat.addnn) _ — f(K.mkn).

Unfortunately, however, we have to again match on Nat.add n n in the LHS to ensure we respect
the requirements of [KLR-REC|, which leads to the same non-confluence issues as earlier.

The central issue we are contending with here is the need to turn a typing requirement into a
syntactic one, something that seemingly cannot be avoided in the absence of conditional rewriting.
Therefore, as we did in the case of proof irrelevance, we choose to exclude the K-like reduction rule
from the Lean™ theory, leaving it to also be eliminated via a pre-translation step (see .

Struct-Like Reduction

Recall rule for struct-like reduction in Lean:

S struct-like AkFt:Sp; ... py
AbFt~Smkp; ... ppt.1 ... t.m

[R-ETA-S|

Compared to [KLR], one key difference to note is that the rule does not place any particular
requirements on the type of the subject term ¢, other than that it must be a structure instance. As
structures lack indices, the RHS construction always has the same type as the LHS, so this rule is
guaranteed to statisfy subject-reduction without any extra premise conditions. This gives us some
hope that it may in fact be possible to encode [R-ETA-S| as a rewrite rule in Dedukti. We again
cannot expect to be able to directly encode such a reduction rule as a Dedukti rewrite rule, on
account of the lack of a defined head symbol on the LHS. However, some of our scrapped ideas from
our attempt at encoding [KLR| may now prove to be useful.

Recall that as with [KLR/, this rule is only really relevant for the reduction of recursor appli-
cations, making it sufficient for us to satisfy Reduction-Soundness w.r.t. the following reduction

rule:
S struct-like AkFt:Spr ... py

AFSrecpy ...pn ft~ftl ...t

[R-ETA-S-REC]
m

We can again attempt to define a rewrite rule on the recursor application itself based on the
above reduction step. In the case of [KLR], we were limited by the functional dependence of the
index arguments on the parameters, which resulted in patterns on the LHS that could result in
non-confluence. This isn’t an issue the case of structure types, which lack indices. Therefore, we
can declare the following rewrite rule as a direct encoding of the above rule:

[f,t] Srecpr ...pn _ft — f (prjls t) ... (prjg t).

Note that this rule makes the originally defined rewrite rule for recursor reduction on S redundant:

[f,t] Stecpr ... pn _ f(Smkay ... ap) < fai ... am.

This is because, in the event that we have a constructor application S.mk a; ... ay,, as a major

premise, the new rewrite rule encoding [R-ETA-S-REC] is able to match, rewriting to f (prj§ (Smk a1 ... am)
with the rewrite rules defined on struct projections then able to take effect to finally rewrite to

fai ... am, the equivalent of the RHS of the original recursor reduction rewrite rule. As such, our
translation can override the usual generation of recursor rewrite rules on structure types to instead

generate rules based on [R-ETA-S-REC|, as described above.

4.2. DERIVING REDUCTION RULE ENCODINGS 103

Generating the rewrite rules in this way also recovers confluence with the rewrite rule for struct-n

(recall the non-confluence issue with our struct-n encoding described earlier in [Section 4.1.3)). This
is because it does not require an explicit construction in the major premise, so the fact that the
struct-n rewrite rule possibly rewrites constructor applications to non-constructor applications is no
longer a problem.

Recall the reduction rules associated with Lean’s quotient types:

A= (3;T) X quotient-declared

[QIND]
At @Quot.ind Ar B p (0Quot.mk Ar a)~pa

A= (3;T) ¥ quotient-declared

[QLIFT]
At @Quot.lift Ar B f h (CQuot.mk Ara)~ fa

Both rules can be easily translated to Dedukti rewrite rules that closely resemble those that
would be generated for recursor reduction with ordinary inductive types. In terms of the implemen-
tation, we generate these rules, and the associated symbol declarations for quotient types, when we
encounter a quotient declaration (the constructor Lean.ConstantInfo.quotInfo in the metapro-

gramming framework). The rules generated for Quot.ind and Quot.lift are as follows:

[p,a] Quot.ind ~ p(Quot.mk __ a) < pa.
[f,a] Quot.lift f (Quot.mk a) — fa.

Chapter 5

Designing a Preliminary Translation

At this point, we have fully specified the theory Lean™, a maximal sub-theory of Lean that is
amenable to direct translation to Dedukti (given an adequate encoding of Lean™ in Dedukti). In
Lean™, we have done away with the rules [PI], [KLR|, and [UNIT], which we have observed to cause
particular difficulties for defining a Dedukti encoding. We have been able to define the translation
| - |=", which respects the desired properties of soundness and completeness.

This translation can likely already take us quite far in terms of translating substantial parts of
Lean’s standard library, and even some portions of Mathlib. But we will be limited to translating
very low-level concepts; in particular, we will be limited to constructive logic, as Lean’s proof of the
excluded middle property makes essential use of proof irrelevanceE]. The use of proof irrelevance and
K-like reduction pervades many other parts of the standard library as well (unit-7 is also used in a
number of places, but not nearly to a similar extent). Therefore, if we are aiming to translate the
full transitive closure of the dependencies of every constant (without introducing any new axioms in
our translation), many higher-level formalizations in the standard library and Mathlib would be out
of reach, because it is very likely that they would depend on some constant that uses an eliminated
feature.

So, to have a full translation, we are left with the question of whether it is possible to define
a preliminary translation from Lean to Lean™, which we can compose with our previously defined
translation from Lean™ to Dedukti to have a complete translation from Lean to Dedukti. Let’s
use the notation | - |~ for our hypothetical preliminary translation from Lean to Lean™, using the
same notation for context translation. If such a translation is possible, respecting the properties
of soundness and completeness, we can achieve a full translation to Dedukti by defining it as the
following composition:

[t = e 1=

We also aim to define the translation |- |~ such that Lean types are translated to Lean™ types,
meaning that our type-level translation would be defined as:

[el

Soundness and completeness of this composite translation would follow from the soundness and
completeness of the individual translations |- |~, | - |7, and ||-||=". So, the question is: does such a
translation | - |~ exist, and if so, what does it look like and how can we implement it?

!The proof, which can be found in the standard library file Classical.lean, is based on Diaconescu’s
theorem, which utilizes the axioms of choice and propositional extensionality, and the theorem of functional
extensionality (whose proof makes use of quotient constructions).

105

106 CHAPTER 5. DESIGNING A PRELIMINARY TRANSLATION

5.1 Theoretical Background

We want our translation |- |~ to respect the following soundness property:

Theorem 5.1.1 (Lean-to-Lean™ Soundness). For all contexts A and terms ¢, T such that A+ ¢: T,
we have |A|™ = [¢|7 - |T|~

Note that this soundness property looks a bit different from the soundness properties that we
expressed w.r.t. the translations |- |7 (and |- |Z (Theorem 2.3.1] M because we do
not make use of a separate type-level translation from Lean to Lean™ (as we have done before in
defining the type-level translations ||-[|Z" and [|-|| 7). Specifically, the above statement implicitly
requires that that |A|™ F |T'|” : Sort ¢ (necessary for the conclusion |A|™ F |t|” : |T|” to be
well-typed), which we assume to follow from A F T : Sort /.

We also seek to satisfy the following completeness property:

Theorem 5.1.2 (Completeness). For all contexts A and terms T such that A - T : Sort u,
if there exists some term ¢ such that |A|~ F ¢ : |T|~, then there exists some term ¢’ such that
AFt:T

Observing these desired properties, we can speculate a bit on what their proofs might look like,
and in doing so perhaps derive some intuition regarding the possible form of our translation | - |~
Recall that with our Lean™-to-Dedukti translation, its correctness heavily relied on the translation
of the typing context, where we were able to encode a number of the particular definitional equalities
from Lean™ as rewrite rules in Dedukti. This allowed the original Lean™ typing derivation to have a
corresponding derivation in Dedukti, with the term-level translation being essentially a one-to-one
mapping from Lean™ syntax to Dedukti syntax.

In contrast, the task of translating from Lean to Lean™ involves translating from a larger theory
to a strictly smaller one. Lean™ offers no additional features over Lean that we can take advantage
of in our translation. As such, a lot more of the “burden” of maintaining these translation properties
will likely lie on the translation of the terms themselves, rather than some particular encoding. In
a similar way to how implicit definitional equalities in Lean™ became explicit in the form of rewrite
rules when translating the typing context to Dedukti, we can expect that the implicit rules of [PI],
[KLR], and [UNIT] will become explicit in translating from Lean to Lean™, but in the term-level
translation, rather than in the context-level translation.

5.1.1 Comparing Theories

Before we start trying to actually define our translation, let’s take a closer look at our theories and
try to establish some relative properties about them. Doing so could be a useful “sanity check”,
helping to ensure that our translation goal is feasible in the first place, and possibly helping us gain
some additional intuition on what our translation should look like.

Firstly, we know that it is the case that Lean™ C Lean — this follows from the fact that Lean™’s
definitional equality relation uses a subset of the definitional equality rules in Lean, where the
missing rules cannot be reconstructed from the other rules (Lean’s theory contains no redundant
rules). However, this does not tell us a whole lot about the feasibility of a translation — roughly
speaking, the fact that a term is no longer typeable in the smaller theory does not mean that there
isn’t an “equivalent” term in a smaller theory with similar properties, that we can try to align our
translation towards. Indeed, the subset relation works in the opposite direction to what we would
like to show: it says that any term typeable in Lean™ is also typeable in Lean, whereas we would like
to say something about the inhabitance of types in Lean™ given the inhabitance of corresponding
types in Lean. So, let’s try to more deeply analyze our respective theories to better develop some
notion of translation feasibility.

5.1. THEORETICAL BACKGROUND 107

Conservativity of Lean over Lean™

Intuitively, for Lean™ to be a good target for translation from Lean, Lean™ should not be strictly
less expressive than Lean in terms of the provable propositions. Any proposition provable in Lean
should also be provable in Lean™ (the opposite always holds since Lean™ C Lean) — this needs to
be the case if we want to have any hope in defining a correct translation. More generally, the above
should apply to any type, replacing the notion of provability with inhabitance.

When we talk about types, though, it’s important to make a distinction between types only
expressible in Lean and types expressible in both Lean and Lean™. Some types are expressible
exclusively within Lean; for instance, the type T Qq below requires the use of proof irrelevance in
order to be well-typed in Lean:

variable (P : Prop) (pq : P) (Q : P -> Prop) (Qq : Q @ (T : Q p -> Type)
axiom trickyType : T Qq -- need "¢ g to be defeq to " p° for T {q : Type’

It’s important to consider these types as well when considering the relative expressivities of our
theories. But, how exactly can we express the inhabitance of T Qq in Lean™ when it is not even
well-typed in Lean™ to begin with?

For the sake of simplicitly, let’s brush aside this question for the moment and only consider the
relative expressivity of the theories w.r.t. types that are already also well-typed in Lean™. Let’s state
a preliminary requirement: if we have some type T that is well-typed in Lean™, T being inhabited in
Lean should imply that it is also inhabited in Lean™. This corresponds to the well-known condition
of “conservativity” of one theory over another, and can be stated explicitly as follows:

Conjecture (conservativity). We say that Lean is “conservative over” Lean™ if for all contexts A
and terms T such that A F T : Sort u and F A well-formed, if there exists some term ¢ such
that A+t : T, then there exists some term t’ such that A+ ¢ : T

Conservativity is a relatively standard notion in logic. It is typically used in reference to theories
that can be seen as extensions of other theories, where showing conservativity of the extended
theory over the original one can serve as a justification of the fact that the extension is “safe” — in
particular, that it does not introduce any possible inconsistencies by expanding the class of provable
propositions to include the proposition False.

So, we would like to demonstrate that Lean is a conservative extension of Lean™. If this turns out
not to be the case, then we will need to adjust our translation in order to somehow “compensate”
for the inherent lack of expressivity in Lean™. Let’s start by analyzing the specific definitional
equalities that we have eliminated from Lean, and try to see where we might run into trouble.

Suppose we have some term A F T : Type and A F ¢ : T, but with A ¥ ¢ : T. This would
require that one of the eliminated definitional equalities — [PI], [KLR], or [UNIT] — was used in an
“essential” way in the typing of ¢ in Lean. If we can find minimal examples of terms ¢ and T that
satisfy these conditions, we can assess the inhabitance of T in Lean™ to determine whether Lean is
truly conservative over Lean*

Useful here is the equality inductive type, defined in Lean as the type Eq:

inductive Eq {A : Sort u} (a : A) : A = Prop where
| refl : Eq a a

The constructor of the equality type, Eq.refl, takes a parameter a : A that enforces an identical

inductive type index in the output type Eq a a. This corresponds to a notion of equality since

2Note that this will check a necessary condition for conservativity, not a sufficient one. It may be the case
that a minimal term using an eliminated definitional equality in Lean can be translated another term of an
equivalent type in Lean™, but with more complex terms using this same definitional equality still remaining
unstranslatable.

108 CHAPTER 5. DESIGNING A PRELIMINARY TRANSLATION

it requires that the LHS and the RHS of the equality type are syntactically identical for any base
construction.

This constructor is particularly useful to us here because it can be used as a quick check of
whether or not the kernel considers two terms to be definitionally equal. Specifically, we have the
following property:

Lemma 5.1.3. For all contexts A and terms a,b,T such that A - T : Sort u, A+t a: T and
AFDb:T,
AFa=b < AF Eq.refl a:Eqab.

Proof. In the forward direction, suppose A - a = b. Then, we have the following derivation:

AFEqa=Eqa AFa=b

Al Eq.refl a:Eqaa AFEqaa=Eqab

Al Eq.refl a:Eqabd

In the reverse direction, suppose A F Eq.refl a : Eq a b. Such a typing necessarily involves
a use of conversion, as the type of Eq.refl « is normally Eq a a. To derive a definitional equality

between Eq a a, Eq a b, we would necessarily need to use application congruence (as Eq is not a
defined symbol), thus requiring a derivation of A - a =b. 0l

Now, in order to get our minimal terms, we can use Eq.refl to prove a theorem that directly
encodes an eliminated definitional equality as a propositional one in the theorem statement. Let’s
start with unit-n, which can be encoded as a propositional equality between two terms of the same
unit type:

inductive Unit : Type where

| mk : Unit

-- ('rfl° abbreviates ‘refl _')

theorem unit_eta (a b : Unit) : Eq a b := rfl

Such a reflexive proof would not be valid in Lean™, because without [UNIT]| there is no way to
establish a definitional equality between a and b. However, this theorem is still provable in Lean™,
where it follows from elimination on the equality type:

theorem unit_eta' (a b : Unit) : Eg a b :=

--Eqabd
Unit.rec (motive := fun x => Eq a x) (
-- Eq a Unit.mk
Unit.rec (motive := fun x => Eq x Unit.mk)
-- Eq Unit.mk Unit.mk
rfl
a)
b

Therefore, the lack of [UNIT| in Lean™ does not present any immediate concerns regarding the
conservativity of Lean over Lean™.

The situation is similar for K-like reduction. Consider again the example K-like inductive type
K:

inductive K : Bool -+ Prop where
| mk : K Bool.true

5.1. THEORETICAL BACKGROUND 109

We can characterize the rule [KLR| w.r.t. K with the following theorem:
theorem klr (k : K Bool.true) : Eq k K.mk := rfl

Again, this proof is no longer valid in Lean™, which lacks [KLR|, so we would like to see if it is still
at least provable as a propositional equality. While K-like inductive types are not always technically
unit types (as unit types cannot carry indices), we can use the eliminator in much the same way
as we did for unit types, when we have a term that is well-typed as the unique constructor of the
K-like inductive type. Together with the use of the equality inductive type Eqk its heterogeneous

counterpart HEq, and the equality substitution principle Eq.subst, we can prove this theorem in
Lean™ through elimination on K as follows;

theorem klr' (k : K Bool.true) : Eq k K.mk
eq_of_heq (K.rec (motive := fun _ k' => HEq k' K.mk) HEq.rfl k)

Notably, this proof also does not require the use of [PI]. Recall, however, that the only place where
the use of [KLR] really matters is in recursor reduction on K-like inductive types. Let’s also verify
that recursor reduction involving [KLR| remains provable as a propositional equality in Lean™. In
Lean, we can characterize this with the following theorem:

theorem klr_rec {motive : (a : Bool) =+ K a =+ Sort u}
(m : motive Bool.true K.mk) (k : K Bool.true)
Eq (K.rec (motive := motive) m k) m := rfl

In Lean™, using the theorem klr', we can also prove this property:

theorem klr_rec' {motive : (a : Bool) + K a -+ Sort u}
(m : motive Bool.true K.mk) (k : K Bool.true)
Eq (K.rec (motive := motive) m k) m :=
have : Eq K.mk k :=
Eq.symm (klr' k)

have : HEq (K.rec (motive := motive) m k) m :=
Eq.subst
(motive := fun k' => HEq (K.rec (motive := motive) m k') m)

this HEq.rfl
eq_of_heq this

Since the use of [KLR]| in recursor reduction is provable as a propositional equality in Lean™, we
also do not have any immediate reason to suspect that the lack of [KLR| in Lean™ leads to any
possible problems in showing the conservativity of Lean over Lean™.

Let’s now consider the case of general proof irrelevance. We can encode this as an equality in
a similar fashion, asserting the equality of two elements of the same propositional type. Thanks to
[PI], this can also be proven reflexively in Lean:

theorem prflrrelThm (P : Prop) (pq : P) : Eq p q := rfl

This proof is again no longer valid in Lean™, which lacks [PI]. What’s more, in this case, we cannot
attempt to do any kind of elimination as we did in the unit-n case: this definition is polymorphic in
the propositional type P, which we know nothing about other than the fact that it lives in Prop.
In fact, it would seem to be the case that it is in fact not possible to prove the equality between
two proofs of the same propositional type in a theory that does not include [PI]. [PI] was, indeed,
the only aspect of Lean accounting for any base notion of proof irrelevance — it is not assumed
anywhere else in the theory, except in the [KLR] rule, which doesn’t help us here either — P is not
necessarily a K-like inductive type, and [KLR] is not present in Lean™ anyways. So, it seems to

110 CHAPTER 5. DESIGNING A PRELIMINARY TRANSLATION

be the case that Lean is not a conservative extension of Lean™: the type of prfIrrelThm above is

well-typed in Lean™, but not inhabitedE], meaning that we have lost some degree of expressivity in
eliminating the proof irrelevance rule from our theory.

The Context-Level Translation

So, we are faced with the sad reality that Lean is not conservative over Lean™. How can we adjust
our translation to address this? Well, fortunately, the form of our translation also allows us to
adjust the typing context A, which means that we can probably introduce axioms to the constant
context I' as needed to recover some expressivity in our terms. Obviously, however, we don’t want
to go too far in doing this, e.g. introducing axioms that make it possible to prove False — ensuring
that our translation also respects the completeness property should help prevent this.

Firstly, let’s define our translation of constant contexts |X|~ and local contexts |I'|~ as usual,
simply applying the object-level translation to the types and values found in the constant and bound
variable contexts (with the universe level parameter context remaining unchanged). We will want
to determine the set of prefix constants >’ to define a context-level translation of the following form:

(%5 (T Tp))|™ = (X, 1275 (T [TB[7).

We want to choose ¥/ such that this typing context, in light of Lean™’s type theory, is “sufficiently
expressive” to enable us to possibly define a term-level translation respecting our desired properties.

In particular, as we have seen above, the absence of [PI| in Lean™ results in some possible
difficulties in deriving a sound and complete translation, so we will probably want to add an axiom to
Y that enables us to prove prfIrrelThm. This axiom should essentially mirror the proof irrelevance
rule [PI], converting its premises to hypotheses and its conclusion to the output type. The output
type should also be a propositional equality, rather than a definitional oneﬂ This actually exactly
corresponds to the type of the theorem prfIrrelThm above, which we purposely chose to be a
minimal propositional representation of [PI|. In our theory Lean™, we will have to turn it into an
axiom, as it is no longer provable without [PT[}

axiom prfIrrel (P : Prop) (pq : P) : EQpgq

We can now tentatively define ¥/ = [prfIrrel]. We can be reasonably confident that introducing
this axiom in our translation does not cause any inconsistencies that would be problematic for
showing soundness and completeness: since prfIrrel was already a provable proposition in Lean,
we know that assuming it as an axiom in Lean™ results in a theory that is at least as consistent as
Lean.

The question remains of how we could actually utilize this axiom to effect our translation, and
whether the axiom prfIrrel alone is truly sufficient for a valid translation. For now, however, we
will be content in the knowledge that with this axiom included by our translation, we at least stand
some chance of being able to define a correct translation.

3That is, without assuming the axiom propext (and all of its dependencies) in our typing context — recall
from that propositional extensionality allows us to prove proof irrelevance as a propositional
equality in the absence of [PI].

4Lean provides no way to designate new definitional equalities via definitions, so propositional equality
is the best representation we have.

% Alternatively, because prfIrrel is derivable from propext (as shown in|Section 1.2.2), we could instead

assume the presence of propext axiom and all of its dependencies in our smaller theory. For simplicity,

however, we chose to take prfIrrel to be an axiom for the remainder of this work.

5.1. THEORETICAL BACKGROUND 111

Lean : An “Adequate” Target Subtheory?

Analyzing the conservativity of Lean over Lean™ has proven to be useful in helping us refine part of
our translation. However, we are still not entirely sure of the feasibility of defining a translation. In
fact, we have been doing things somewhat backwards w.r.t. convention: the conservativity property
is often shown to establish that a particular extension of a theory does not allow you to prove things
that you would not have been able to in the original theory, often with the goal of showing that
the extended theory maintains any consistency properties that can be shown to hold in the original
theory. We have kind of been trying to use it in the reverse direction, to make sure that a smaller
theory can inhabit every type that is expressible an extended theory. We showed that this was in
fact not the case, and showed a way to extend our translation of the constant context with an axiom
to hopefully get it “up to par” with the expressibility of the extended theory without making any
actual changes to the theory itself.

Indeed, as we hinted at earlier, conservativity does not fully capture a notion of translation
feasibility as we would like to express it — one of the premises of conservativity is that the inhabited
type is already a valid type in Lean™, when of course that is not always the case (as demonstrated
in the example trickyType above). When it comes to defining a practical translation, we need
to consider these types as well. Recall in particular the soundness and completeness properties
mentioned earlier — analyzing whether or not we can possibly satisfy these properties in a translation
to our target theory can help us possibly refine the theory further, and also get at some requirements
that may help guide us in defining our translation.

Precisely, suppose we have some A+ T : Sort £ and A+t :T with A T : Sort £. Going
along the lines of standard conservativity, we would like to conclude that there is some A = ' : T,
but this is not possible here: the derivation cannot exist because T is not a type in Lean™. So, we
need to say something a bit weaker. Rather than asserting that we have some inhabitant of T itself,
we would perhaps like to instead talk about the inhabitance of some alternative type 7" and context
A’ that does satisfy (prfIrrel, A’) = T’ : Sort ¢, and which is related to T in some principled
way. One obvious possible target relation here could be propositional equality: 7" should, at the
very least, be propositionally equal to T in Lean (it cannot possibly be in Lean™, where the equality
type cannot be stated as T' is not typable). Additionally, the context A should be propositionally
equal to the context A’ in the sense of all of the types and values found in A being provably equal
to the corresponding types and values found in A’. Given a sequence of proof terms p, we express
the fact that these are well-typed as equality proofs between the corresponding types in A and A’
as follows:

AF p:A=r A
In full, we would like to show the following “adequacy” property:

Conjecture (Adequacy-«). For all typing contexts A and terms T such that A+ T : Sort ¢, there
exists some term 7" and context A’ such that (prfIrrel,A’) F T’ : Sort ¢ and some terms p,p
such that AFp:T =T and AF p: A =7 A’. Additionally, if there exists some term ¢ such that
AFt: T then there exists some term ¢’ such that (prfIrrel, A") = ¢/ :T".

This is closer to the notion that we want here because it leaves the door open for a complete
translation. This can be shown in the following lemma:

Lemma. For all typing contexts A, A’ and terms T, T’, and p,p, such that A = T : Sort /,
(prflrrel , A"YF T":Sort ¢, At p:T =T and AF p: A =7 A’ (that is, Adequacy-« holds),
if there exists some term ¢’ such that (prfIrrel, A’)F ¢ : T’ then there exists some A+t :T.

Proof. Let t/q be t with all occurrences of prfIrrel replaced with the term fun _ _ _ => rfl.

Because Lean™’s typing is a subset of Lean’s, we know that A + ¢4 : 7'. Then, we have A F
cast 7" T pt':T. O

112 CHAPTER 5. DESIGNING A PRELIMINARY TRANSLATION

In the above proof, we make use of the cast operation, which has the following type signature:
def cast {AB : Sort u} (h : A=B) (a: A) : B := ...

In the literature, cast is often referred to as a “type transport” operator, which effects a kind
of “explicit conversion” between two provably equal types. As we will see, the use of the cast
operation will be crucial in defining our translation from Lean to Lean™.

If our translation |T|~ on any type T correctly outputs a term T’ satisfying the conditions
described by the Adequacy-a property, then the translation respects the completeness property.
Similarly, the feasibility of soundness in a translation can be shown, assuming that the translation
[t|~ of some inhabitant A k¢ : T also correctly produces a term t’ respecting (prfIrrel, A’) = ¢ :
T, corresponding to Adequacy-a’s inhabitation clause.

This notion, while useful for ensuring translatability of proof terms under equivalent proposi-
tional types in the target theory, is perhaps not as strong as we would like, however. The requirement
of propositional equality between T' and T” in the source theory roughly ensures that we can define a
translation that preserves the “meaning” (i.e. semantic interpretation) of the type T', but what about
terms that are not types? How, for instance, can we be sure that the term Nat.succ Nat.zero
preserves its interpretation as the natural number one when we translate it to Lean™7

If we are only concerned about non-type terms that correspond to proofs, there isn’t anything
we need to pay particular attention to here. Due to Lean’s small elimination principle, it is not
important to preserve the particular structural makeup of proof terms in a translation — a proof
can always be substituted with any other proof with no effect on any subsequent computations.
However, this is of course not the case for non-proof terms, which can be compared on the basis of
their internal makeup, and eliminated upon to define transformations based on the actual “contents”
of the term (in the case of the term being reducible to a constructor application). For these reasons,
we would also like the semantic content of such terms to be preserved by our translation.

Therefore, we would like to generalize the Adequacy-a property even further — specifically, we
want to be able to propositionally equate not just types with their hypothetical images in our target
theory, but terms as well. However, while we were able to use standard propositional equality in
the Adequacy-a property to state the equality between the types T and T”, it doesn’t quite make
the cut for the property we would like to state here. Recall the type of the equality inductive type
constructor:

-- Eq.{u} {4 : Sort u} : 4 + 4 + Prop
#check Eq

To state an equality, both the LHS and RHS must have definitionally equal types. The only reason
we were able to use Eq in our statement of Adequacy-a was because the type Sort ¢ happens to
already be well-typed in Lean™, and so the equality type construction 7' = T" was well-typed (the
LHS and RHS both have type Sort f). However, for an arbitrary well-typed term ¢ such that
A+ t: T, we can only surmise the existence of a term ¢’ and type T’ such that A - ¢ : T and
T = T'. We would like to also assert equality between ¢t and ', but they have the types T and T”,
which are not necessarily definitionally equal in Lean, so ¢ = ¢’ may not be well-typed.

It would seem that we need to work with a more general notion of equality, which allows the
LHS and RHS types to differ. This exactly corresponds to Lean’s definition of the heterogeneous
equality type HEq:

inductive HEq : {A : Sort u} + A + {B : Sort u} =+ B = Prop where
| refl (a : A) : HEq a a

We will use the notation a == b for HEq a b. As one would expect, its constructor is limited to

inhabiting HEq type constructions with definitionally equal LHS and RHS types and values.

5.1. THEORETICAL BACKGROUND 113

Using HEq, we can now formulate a more general adequacy requirement. Firstly, let’s establish
some new notation for indicating provably equal typing contexts: given two typing contexts A and
A’ and a sequence of proof terms p, we express the fact that these are well-typed as heterogeneous
equality proofs between the corresponding types and values in the contexts as follows:

AF p: A==A
We can now state our more complete adequacy requirement as follows:

Conjecture (Adequacy). We say that Lean™ is an “adequate subtheory” of Lean if, for all typing
contexts A and terms ¢,T such that A+ T : Sort £ and A+ ¢t : T, there exists terms ¢/, 7" and
context A’ such that (prfIrrel, A’) T’ : Sort £ and (prflrrel,A’) ' : T’ and terms p,q,p
such that Abp: T =T, Ak qg:t =t,and AF p: A==A"

Note that Adequacy implies Adequacy-a. If T is inhabited, Adequacy gives us the existence

in Lean™ of an inhabited and propositionally equal 7’. Otherwise, we can assign T := Sort /
and t := T, and the existence of a propositionally equal T’ follows from Adequacy, where the
heterogeneous equality proof A + ¢ : T == T’ can used to derive a proof of the homogeneous

equality 7' = T" as the LHS and RHS have the same types.

Therefore, if it is the case Lean™ is an adequate subtheory of Lean, we have good reason to
believe that it would be possible to define a sound and complete translation from Lean to Lean™.
While formalizing this property was interesting, at this point we might not be able to get much more
out of analyzing whether it actually holds at a more abstract level. Let’s get started with actually
trying to define what our translation might look like. If we can successfully define a sound translation
that maintains heterogeneous equality between the input and output terms (in Lean’s theory), this
would amount to a constructive proof of Adequacy, ensuring in turn that the translation satisfies
the completeness property. As we will see, it is indeed possible to do such a translation, and, in
fact, the translation we derive allows us to always have a definitional equality in Lean between the
original and translated terms.

5.1.2 An Intuitive Translation Sketch

Subterm Translation

In deriving a translation respecting the soundness property, we again need to pay special attention
to the conversion rule, proving soundness in the case of typing by [CONV]. In the previous chapter,
we came up with the notion of “Defeq-Soundness”, which we showed to be sufficient for showing
this property, making for a particularly straightforward translation, given an adequate encoding of
Lean™’s definitional equalities as a Dedukti term rewrite system. Can we show a similar property
in defining our translation from Lean to Lean™?

Let’s first look at exactly how far we would need to go for the equivalent of definitional equality-
soundness to hold in our translation, investigating the problematic case of proof irrelevance. Con-
sider the following theorem in Lean:

variable (P : Prop) (p : P) (q : P) (T : P =+ Prop)
theorem prflrrelEx (t : Tp) : T q := t

Here, we need to have a definitional equality between T p and T q in order for t : T p to be well-
typed as T q. Since T is an irreducible function head, this boils down to the definitional equality
between p and q, which holds in Lean via [PI]. For Defeg-Soundness, we would need the translation
of p to be definitionally equal to the translation of q in Lean™. Since [PI] is not present in Lean™,
this would seemingly take nothing less than erasing the proofs themselves. Specifically, we could
imagine introducing a symbol like this:

114 CHAPTER 5. DESIGNING A PRELIMINARY TRANSLATION

axiom sorryAx (A : Sort u) : A

which enables any type to be inhabited. We could then “erase” the proofs by substituting them for
sorryAx P, making them syntactically equal:

theorem prflrrelExSorry (t : T (sorryAx P)) : T (sorryAx P) :=t

Defining a translation that erases proof terms in this way might seem to work for our purposes,
however the inclusion of such an axiom our in constant context via the translation obviously renders
the context inconsistent, as sorryAx can be used to provide a proof of False. And being able to

prove False spells doom for our ability to show that our translation is complete, since we would
presumably want to translate False as False, and we would expect that False is not inhabited
in Lean. Not to mention, such a translation loses any information on the structure of the original
proof, eliding one of the principal motivations for our translation to Dedukti — the translation of
proofs to other proof assistants for cross-checking.

So, it seems that we may need to take a step back and try a different strategy. It seems that we
can no longer solely rely on instances of [CONV] to be preserved in the derivation of our translated
terms if they make use of definitional equalities that no longer apply in Lean™. As in the above
case, when adding an extra axiom introduced inconsistencies, any attempt at altering our translation
to ensure that [CONV| judgments are preserved will likely be destructive in some sense. So, our
translated terms will likely have to take another derivation path. Whenever we have an instance of
[CONV] in the original typing that doesn’t hold in the smaller theory, we can imagine translating
the subject term such that it already has the desired type without needing to invoke the problematic
conversion.

How exactly can we go about this? Well, something we could try to do is to make the conversion
explicit in the translated term itself, so that the desired type results directly from type inference
without requiring conversion. Since the “explicit” variant of definitional equality is propositional
equality, the Eq/HEq types will probably figure into our translation here. We just need a way to
turn the propositional equality of types into an explicit type conversion, which exactly corresponds
to the cast (i.e. type transport) operation that we introduced earlier.

Using this cast symbol in the translation of prfIrrelEx, we could obtain the following transla-
tion:

theorem prflrrelExTrans (¢t : Tp) : T q :=
cast (T p) (T q)
(congrArg T (prflrrel p q))
t

The use of proof irrelevance is made explicit in the proof provided to cast, which uses the prfIrrel
axiom. In general, if we have a use of [CONV] in the original theory, this could signal to apply a
cast to the subject term using some term p proving equality between the translations of the inferred
and expected types in Lean ™, essentially effecting a transformation of the derivation tree as follows:

AFAB:Sort{ AFA=B AFt:A
AFt:B

1

1

1

1

1

1
v

|A|” ¥ cast |A]” |B|” :|A]” = [B]” = |A]” = [B]” |A]"F p:|A|” = |B|”
A" = cast ||~ B p:|A[- — | B A7 1™ - 1A
|A|” F cast |A|” |B|” plt|” :|B|”

5.1. THEORETICAL BACKGROUND 115

Defining our translation in this way is a marked departure from how we have defined translations
previously, in that it depends on the actual typing derivation of a term, rather than just its syntactic
structure. When defining our translation from Lean™ to Dedukti, we were able to define a translation
that was essentially a transformation of Lean syntax into Dedukti syntax (assuming a particular
type theory encoding of Lean™ in Dedukti). This translation only depended on the structure of
the term itselfﬁ7 with the typing derivation only being relevant in the proofs of soundness and
completeness of the translation — in particular, it would be feasible to apply the translation to
certain non well-typed terms. In this case, however, knowing the details of a typing derivation is
essential to our translation task, with the translation only being defined on well-typed terms. We
do not know from the term ¢ by itself that it must have a type cast applied to it in order for it to
be well-typed within some larger typing context.The fact that we have to apply a cast around |¢|~
is a result of the use of [CONV] in the typing derivation, which in turn is a result of the typing of
the term in which ¢ originally appears (e.g. if ¢ is the argument of a function with domain type B).

Assuming that we can always provide the type equality proof p that is required by cast, this
would seem to be a valid translation strategy, in which we make implicit uses of type conversion
in typechecking ezplicit in the translation. In effect, we convert instances of [CONV] in the Lean
typing derivation to a series of [APP] instances in a Lean™ typing derivation via a translation of the
subject term, as shown in the derivation transformation above. There is one subtlety to consider
here, however: as reflected in the type of p, the types A and B may themselves require translation
if they are ill-typed in the target theory, and in general our translation will produce a cast of ¢ from
|A|~ to |B|~, with the resultant term having type |B|™, rather than the type B. This is probably
not an issue, however, since we can presume (formally by induction) that whatever term context
originally required ¢ to have type B would now require type |t|~ to have type | B|~ once this context
is itself translated to Lean™.

However, we likely do not wish to eliminate every instance of [CONV] in typing, but rather limit
this translation to places where it is actually needed: wherever the definitional equality between
A and B no longer holds in Lean™. That is, when we have A - A = B appearing in an instance
of [CONV] in the original Lean typing derivation, but |A|~™ (¥ |A|~ = |B|~. Additionally, we
may want retain uses of [CONV] in the type equality proof argument to cast, where we may
want to use Eq.refl to provide proofs of equality between syntactically distinct subterms that

remain definitionally equal in Lean™. Truly eliminating all instances of [CONV] via our translation
would also eliminate all uses of definitional equality in Lean™, which would essentially amount to
a translation to weak type theory (WTT) where the kernel can only identify terms on the basis of
syntactic equality. Translating to W'T'T would be far in excess of what we need to do, as it would
also require providing propositional equality axioms/lemmas for every other definitional equality in
Lean (even very “basic” ones such as -reduction and d-reduction) to be able to build the needed
cast equality proofs, whereas we only care about making explicit a select few definitional equalities.

We can observe a particular characteristic of this proposed translation: the output terms are
essentially the same as the input terms, except that they have been “decorated” by casts between
propositionally equal types. This gives us some hope that such a translation respects completeness
by maintaining propositional equality between the input and output terms. Hopefully, we can
heterogeneously equate cast subterms with the original subterms, and stitch everything together
with congruence lemmas for the top-level proof of propositional equivalence between the original
and translated terms.

5The only practical exception to this is the need to infer the universe level of binder domains when
translating A-expressions and II-types, as required by our PTS encoding. Here, you could say that the
typing derivation of such terms becomes relevant to our translation via the typing rules [LAM] and [ALL],
which require binder types to be well-typed as some Sort ¢. However, we can also easily imagine an alternate
syntax for Lean where binder domains are annotated with universe levels, in which case we truly would have
a purely syntactic translation.

116 CHAPTER 5. DESIGNING A PRELIMINARY TRANSLATION

Generating Equality Proof Terms

So, how exactly do we go about producing the type equality proofs required by the type casts
injected by our translation? Thus far, we have defined our translation in terms of the type inference
derivations alone, as this was sufficient for us to be able to sketch how we should translate subterms
by applying type casts to them to make uses of type conversion explicit. To generate well-typed
Lean™ type equality proofs between terms that were originally definitionally equal in Lean, we
might take a similarly inspired approach, making explicit the implicit judgments used in definitional
equality derivations.

The first question that may arise here is: what equality representation should we use for our
generated proofs? At first glance, the normal homogeneous equality type Eq seems like an obvious

choice: at the application of cast, we provide a proof of equality between two types, which must
inhabit the same type universe. Therefore, since the LHS and RHS have the same type (some
Sort /), it suffices to use the Eq type at the application of the cast operation. Indeed, it would

not even make sense to consider using HEq here, as it is not possible to define a “heterogeneous”
cast operation between two types that inhabit possibly different sorts.

However, we need to also consider the typing of equality subproofs of the main equality proof,
which may relate non-type terms. For instance, recall the example prfIrrelExTrans. The “input”

to our translation is the following definitional equality derivation[]:

AFP:Prop AFp,q:P

AFT=T AFp=q
AFt:Tp AFTp=Tq
AFt:Tgq

Converting the derivation of A - T p = T q into an explicit proof, we obtained the expression

congrArg T (prfIrrel p q), where the subproof prfIrrel p q comes from the derivation of
A F p=gq, where p and q are proof terms, not types.

Since p and g happen to have the same type here, we were able to use homogeneous equality
again. However, in general, we may have to produce proofs of equality between terms that do not
necessarily have the same type. Taking the previous example a step further, we can make the type
of our predicate more complex, requiring a second argument whose type is dependent on the second
argument:

variable (P : Prop) (Q : P » Prop) (p : P) (q : P) (Qp : Q p) (Qq : Q q)
(U: (p:P)=Qp ~+ Prop)
theorem prflrrelExHeq (t : Up Qp) : Uqg Qq := ¢t

The typing of t as U p Qp has a more complex derivation, featuring a nested use of proof irrelevance

" Alternatively, we could say that the input is a well-typed term ¢ with the given typing derivation (if we
want to think of our translation as a partial function on terms, rather than a total function on derivations).

5.1. THEORETICAL BACKGROUND 117

in identifying Qp and Qq:

AFP:Prop AFp,q:P

AFQ=Q AFp=q
AFQq:Qq AFQp=0Qgq
AFQp:Prop AFQp:Qp AFQq:Qp

AFQp=0Qq
This figures into a larger derivation identifying U p Qp and U q Qq:

AFP:Prop AFp,q:P

AFU=TUT AFp=q

AFUp=Uq AFQp =Qq

AFUpQp=Uq Qq

In this instance of [APP], both the function heads U p and U q and arguments Qp and Qg have
different types that cannot be identified in Lean™: A ¥ Q p -> Prop = Q q -> Prop since
A Q p = Q q. Therefore, in order to express a propositional equality between them, we will
necessarily have to use heterogeneous equality: our translation will need to generate Lean™ proofs

p1 and po typed as AFp1 : U p == U qand Ak ps: Qp == Qq, and we will need to combine them
into our final proof using the following heterogeneous version of the application congruence lemma:

theorem appHEqQAB {A B : Sort u} {U : Sort v}
(hAB : A = B)
{f : A-U} {g:B-+U} {a: A} {b : B}
(hfg : £ == g) (hab : a == b)
:fa=gb = ...

The proof term po will also have to use a different version of the proof irrelevance lemma, generalized
to heterogeneous equality:

theorem prfIrrelHEqPQ {P Q : Prop} (hPQ : P = Q)
(p:P)(q:Q :p==q :=Dby
subst hPQ
exact prflrrellEq _ _

Note in particular that this theorem requires us to provide a proof of equality between the LHS and
RHS propositional types. In this case, such a proof would be constructed from the derivation of
AF Q p=Q q in the conversion step prior to the outer application of proof irrelevance, resulting
in a subproof that we then incorporate into the full type equality proof, giving us the following
translation:

theorem prflrrelExHeqTrans (t : U p Qp) : U q Qg := cast
(eq_of_heq
- Upfp==Ugqgdlq
appHEqABUV
--0p =409

118 CHAPTER 5. DESIGNING A PRELIMINARY TRANSLATION

(congrArg Q (prflrrel p q))
-- U p == U q
(congrArg U (prflrrel p q))
. gp == gq
(prfIrrelHEqQPQ
--Q@p =04
(congrArg Q (prflrrel p q))
Qp Qa))

5.1.3 A More General Translation Framework

We now have a solid intuition on how our translation will work: we will turn implicit uses of
type conversion and definitional equality judgments in typing derivations into explicit uses of type
transport accompanied by generated propositional equality proofs in our final translated term. But
many details remain unclear, particularly regarding precisely how definitional equality derivations
will be converted into heterogeneous equality proofs. Before getting too far into figuring that out
for ourselves, however, let’s first take a step back and try to see if we can at all generalize the task
we are trying to achieve, in case there is any existing work in a similar direction that we can take
advantage of.

Extensional Type Theory

Let’s start by asking the question: what exactly is Lean’s theory relative to Lean™7 Well, we can
think of it as a theory where certain propositional equalities have been “promoted” to definitional
ones: in particular, those corresponding to unit-n (provable via elimination on unit types), proof
irrelevance (when it is assumed in the typing context), and K-like reduction (which is actually
promoted to a reduction rule). What if we were to take this approach to its limit, treating every
propositional equality as definitional? Doing so can be represented by the following rule, which is
referred to as “equality reflection”

A A:Sort 4 AFK t,s:A AFE _:t=s
— [EQ-REFL)]
At

S

Equality reflection is characteristic of extensional type theory (ETT), which is distinguished from
intensional type theory (ITT) by the presence of the rule [EQ-REFL| promoting all propositional
equalities to definitional ones. Turning every provable propositional equality into a definitional
one is quite hard ask for a typechecker kernel — as a matter of fact, including [EQ-REFL]| renders
typechecking undecidable for sufficiently expressive type systems{ﬂ. Therefore, no practical proof
assistant actually implements equality reflection in its fully general form. However, ETT is still
theoretically interesting as an “ideal target” that many theorem provers aspire to. For instance, the
proof assistants Andromeda [7], F* [37], and Nuprl [2] have limited extensional theories that restrict
the equivalent of [EQ-REFL] to some subset of provable propositional equalities.

Lean,: An Extensional Theory

Now, suppose that we add the equality reflection rule to our theory to obtain a new theory “Lean_”,
using the notation A K ¢ : T for the typing judgment and A F a = b for the definitional
equality judgment. How does Lean_ relate to Lean™ and Lean? Well, firstly, we can observe that
Lean™ C Lean_,. Every well-typed Lean™ term is also well-typed in Lean_, since Lean_’s type

e

80ne can imagine encoding the question of whether a particular program halts as a propositional equality.

5.1. THEORETICAL BACKGROUND 119

theory is a strict extension of Lean™’s type theory. Being an extensional theory, Lean_ can also
type more terms than Lean™ can.

However, what exactly is Lean_ ’s relation to Lean itself? Lean’s type theory contains certain
rules in its definitional equality judgment that are not present in Lean_. However, the presence
of equality reflection in Lean, greatly expands the space of definitional equalities, possibly to the
extent of making up for the lack of the eliminated rules, in which case we would also have that
Lean C Lean_. If this is the case, we may have found an interesting possible way to frame our
translation: since every well-typed Lean term is also a well-typed Lean_ term, we can focus instead
on the task of translating from Lean_, to Lean™, which may be “easier” since we only concern
ourselves with the elimination of the single rule [EQ-REFL]| that is well-known to type theory,
rather than multiple Lean-specific rules. So, let’s try to verify that this is really the case. Formally,
we wish to prove the following theorem:

Theorem 5.1.4. For all contexts A and all terms ¢, T such that A - ¢ : T, we have (prfIrrel, A) F
t:T.

Note that in the above theorem, we assume the presence of the axiom prfIrrel in the typing

context of the Lean_ typing judgment. This is necessary because without it, proof irrelevance would
no longer be definitional, as the proof irrelevance property is not actually provable without an axiom
equivalent to prfIrrel. That is, without including prfIrrel (or propext) in the Lean_ typing
context, we would be able to find a counterexample to the above theorem, as otherwise the theorem
prfIrrelThm would be provable by rfl in Lean, but not in Lean_ .

Since the differences between the theories are all contained within the definitional equality
relation, to prove this theorem it suffices to show that every definitional equality in Lean is also one
in Lean_ . We can precisely state this as the theorem:

Theorem 5.1.5. For all contexts A and all terms ¢, s, if A -t = s, then we have (prfIrrel,A)
t=s.

To prove this, we proceed by induction on the size of the derivations. This means that for
any subsequent proofs shown here, we can assume by the inductive hypothesis that any premise
definitional equality assumed to hold in Lean must also hold in Lean™.

For our proof, we have to consider in turn each of the possible rules that can appear as the root
of a definitional equality derivation in Lean, and show that each one corresponds to some derivation
in Lean_. In the case of the root rule having only definitional equality or typing premises and
being one of the rules that was retained in Lean, , we can immediately show that the corresponding
definitional equality is preserved in Lean_ using the same rule and the inductive hypothesis for the
premises. This covers all of the definitional equality rules except for [RED], [UNIT], and [PI].

For the rules of [PI] and [UNIT], while both of them have been removed from Lean_, they can
still be encoded as propositional equalities: we assume the presence of the axiom prfIrrel in our
context, and we have shown previously how a propositional equality corresponding to [UNIT] can
be proven by elimination for all unit-like inductive types. Therefore, we can use them together with
|[EQ-REFL]| in Lean, to derive the same conclusion from the same premises.

Let’s now consider the rule [RED], recalled below:

AFt~*t ARt =s
AFt=s

[RED]

This rule makes use of the head reduction relation ~», which is specific to definitional equality and
not covered by the induction hypothesis. Since Lean_ also features a reduction relation, we may
think to proceed with the proof similarly to what we did for definitional equality, that is, by showing
that any Lean reduction is also a Lean_ reduction:

120 CHAPTER 5. DESIGNING A PRELIMINARY TRANSLATION

Conjecture 5.1.1. For all contexts A and all terms ¢, s, if A =t ~ s, then we have (prfIrrel, A) E
T~ 8.

However, this property does not actually hold. Since we have removed [KLR], any reduction
involving [KLR| will no longer hold in Lean_ . If we want to prove this property, we would have to
extend Lean_ ’s reduction relation with an extensional reduction rule along the lines of:

A A:Sortu AR t,s:A AR _:t
Alt~s

~ ° [REFL-RED]

Then, we would be able to simply replace instances of [KLR| with uses of this rule, using prfIrrel
to construct the proof term.

However, we do not actually need to add such a rule to our theory. Doing so is redundant and
does not actually add any extra expressivity. To see why, recall the reason why Lean includes a
special reduction relation in the first place — to compensate for a lack of general transitivity in its
definitional equality judgment, which is something that carries over into Lean™. However, in adding
[EQ-REFL] to the theory Lean_ , we also add general transitivity to it. This is because propositional
equality itself is transitive, as expressed in the equality transitivity lemmas:

theorem Eq.trans {A : Sort u} {abc : Ay (h1 : a=Db) (h2 : b=¢c) : a=c¢ := ...
This lemma allows us to show transitivity of definitional equality in Lean_ as follows:

Lemma 5.1.6. For all contexts A and all terms t,s,u,T such that A E t,s,u: T, it A t=s
and A K s =wu, then we have A t = w.

Proof. Because A £ t = s, we have by [CONV| and [CGR-APP| that A -+ Eq.refl t : ¢t = s.
Similarly, because A F s = u, we have A - Eq.refl s : s = u. Therefore, it follows that

At Eq.trans (Eq.refl t) (Eq.refl s) :t = u, and the result follows by [EQ-REFL]. O

This means that, for the purpose of our proof, we may not actually need [Conjecture 5.1.1] to
hold. As long as every instance of A ¢ ~» s in Lean corresponds to an instance of A F t = s in
Lean_ , may be able to use to stitch together the derivation we need.

Formally, we can show that any individual reduction step corresponds to a definitional equality
in Lean, :

Lemma 5.1.7. For all contexts A and all terms ¢, s, if At~ s, then (prfIrrel, A)F t=s.

Proof. This must be shown on a case-by-case basis for each possible Lean reduction rule. Let’s first
the consider the case of a reduction rule in Lean that was preserved in Lean_, with a conclusion
judgment A F t ~» s. If the rule has no premises of the form A F a ~»* b, then we know by the
inductive hypothesis that all of the premises are preserved as their corresponding Lean_ judgments,
and so the conclusion follows by [RED].

On the other hand, suppose the rule has premises of the form A F a3 ~* by,...,A £

ap ~~* by, with the a; being a subterms of ¢ — that is, ¢ = Clay,...,a,| for some term C with
n subterm holes. Then, we know by the inductive hypothesis that that (prfIrrel,A) F a; =
bi,...,(prfIrrel,A) I a, = b,. Therefore, by subterm congruence, we have (prflIrrel, A)
t = Cl[by,...,b,]. We also know by applying the same reduction rule that A £ C[by,...,by] ~ s,
where each of the reduction premises are satisfied reflexively, with the others following by induc-
tion. So, (prfIrrel,A) C[by,...,b,] = s follows from [RED]|, with our conclusion following
from [Theorem 5.1.6

The above reasoning applies to all of Lean’s reduction rules except for [KLR|, which is not present
in Lean_ . For [KLR], the definitional equality follows as a particular case of proof irrelevance, (which
we have shown to hold definitionally in Lean_ with prfIrrel in our typing context). O

5.1. THEORETICAL BACKGROUND 121

This allows us to show that any transitive chain of reduction steps corresponds to a definitional
equality in Lean, :

Lemma 5.1.8. For all contexts A and all terms ¢, s, if At ~>* s, then (prfIrrel,A) = t =s.

Proof. We proceed by induction on the length of the reduction sequence. If the reduction is a single
step, then A ¢ ~» s and we can use [Theorem 5.1.7] to show our result. Otherwise, there is some
term u such that A+t ~» v and A - u ~* s. We have A - t = u by the [Theorem 5.1.7] and

A F u = s by the inductive hypothesis, so our result follows by [Theorem 5.1.6 OJ

Finally, we can show the desired property:

Lemma 5.1.9. For all contexts A and all terms ¢,s, if A F ¢t ~»* sand A - s = u, and
(prflrrel, A)E t=u.

Proof. From the inductive hypothesis, we have (prfIrrel,A) F s = u, and from [Theorem 5.1.8
we have (prfIrrel, A)E ¢ = s, and so the result follows from [Theorem 5.1.6 O

The premises of this lemma corresponds to those of the rule [RED], so this shows that definitional
equality is preserved in Lean_ in the case of typing in Lean by [RED], thereby completing our proof
of

The three theories relevant to our translation that we have introduced thus far are summarized
in the following table:

Theory Rules Assumed Axioms C
Lean™ (F) prilrrel Lean
Lean (- [PI], [KLR] Lean,
Lean_ () | [EQ-REFL] prilrrel

Repurposing an ETT-to-ITT translation?

We have now established that Lean C Lean,: any typing valid in Lean is also valid in Lean_,
and, Lean_ additionally allows any propositional equality to become definitional via |[EQ-REFL].
Relative to Lean_, Lean can be interpreted as a more restricted extension of Lean™, where only
certain propositional equalities are promoted: specifically, those of proof irrelevance (if we assume
the presence of the axiom prfIrrel in the typing context) and unit-n, as well as certain special
cases of transitivity corresponding to Lean reduction derivations involving [KLR]|. Therefore, the
task of translating from Lean_ to Lean™ must be “at least as hard” as translating from Lean. Also,
a translation from Lean, to Lean™ is sufficient for a translation from Lean to Lean™, since for any
Lean derivation we can construct a corresponding Lean_ derivation, which we can then use as input
to this translation.

Translating from Lean_ to Lean can be interpreted as a specific case of the more general task
of translating from extensional to intensional type theory, which is a fairly well-studied topic. Such
a translation is in fact possible, with a formally verified implementation in Rocq by Winterhalter
et. al. in ett-to-itt [43, 44|, which builds on previous work by Oury [29] and Hofmann [23], with
the first result showing conservativity of ETT over ITT demonstrated by Hofmann [22].

This translation places certain restrictions on the target intensional theory, namely that it ex-
hibits propositional uniqueness of identity proofs (UIP) and function extensionality. Lean™ satisfies
UIP thanks to prfIrrel:

theorem UIP {A : Sort u} (xy : A) (pq:x=y) : p=4q :=prflrrel p q

Lean™ also satisfies function extensionality with the theorem funext from the Lean standard library,
where it is proven through the use of quotient types:

122 CHAPTER 5. DESIGNING A PRELIMINARY TRANSLATION

-- (module “Init.Core’)
theorem funext {A : Sort u} {B : A » Sort v {f g : (x : A) » B xJ}
(h: (x:A) fx=gx) :f=g:=...

Restrictions are also placed on the source extensional theory by requiring an ETT syntax with
domain- and codomain-annotated lambda and application constructors, which Lean does not have.
We skirt this requirement through the use of an extra premise in our application congruence lemma
(see Secion 6.9)

Somewhat unsurprisingly, many characteristics of the translation defined in ett-to-itt are
closely in line with the intuitive translation that we derived above. The overall design of the
translation is the same, in that it consists of applying casts to subterms to make implicit uses of
conversion explicit, with type equality proofs being similarly generated from the definitional equality
derivations used by these conversion steps. The ett-to-itt translation also principally works with
heterogeneous equality, though the formulation it uses is somewhat different in that it also carries a
proof of equality between the LHS and RHS types, which, if defined in Lean, might look something
like:

def HEqP {A : Sort u} (a : A) {B : Sort u} (b : B) : Prop :=
Exists fun (p : EQ AB) => cast pa=>»

While such a formulation makes for more convenient correctness proofs, it is less convenient for an
actual implementation, so we instead choose to return to the “John Major equality” used by Oury
[29], which is a more compact and equivalent formulation already defined in the Lean standard
library in the HEq type introduced earlier (corresponding to JMeq in the Rocq standard library).

However, this is done mainly as a formalization convenience, and it is in fact an equivalent
type to the non-proof-carrying HEq type that we propose to use. Another difference is that the
translation is defined w.r.t. minimal extensional and intensional theories, whereas we are concerned
with the particular theories Lean and Lean™. However, we suspect that the results from ett-to-itt
can be adapted to our case (we work towards showing this in [Section 5.1.3).

Practically speaking, our translation does not need to implement a full ETT-to-ITT translation.
We only care about translating terms that are already typeable in Lean, so proof irrelevance, unit-n,
and K-like reduction are the only implicit definitional equality judgments we need to make explicit.
Nevertheless, this does not afford us any real simplifications in the translation algorithm. Proof
irrelevance may be used during typechecking to the same extent as the equality reflection rules in
an extensional theory, as there are no syntactic restrictions on where proofs can appear in terms.
In particular, they can appear within types, leading to some fairly complex translations (as we have
seen previously in in our attempt to translate prfIrrelExHeq).

Interesting to us is the definition by Winterhalter et. al. of a “similarity relation”, which they
denote with the operator “~”. We say that ¢ ~ s if t and s differ only in having certain subterms
“decorated” by type casts between provably equal types. Winterhalter et. al. prove a certain
“fundamental lemma” related to this which states that any two terms that are well-typed in the
intensional theory and related by the similarity relation are also provably equal in the intensional
theory. With respect to our theories, we can state this as the following conjecture:

Conjecture 5.1.2 (Fundamental Lemma). For all contexts A and all terms t,s, if ¢ and s are
well-typed in Lean™ and t ~ s, then there exists some term p such that AF p:t == s.

This conjecture will be useful to us when we try to extend the results from ett-to-itt to our
theories in [Section 5.1.3l

So, let’s officially propose a translation |- |~ from Lean to Lean™ based on an ETT-to-ITT
translation. Recall that our composite translation from Lean to Dedukti was defined as [t|7 :=
[|t|~|=" on all well-typed terms ¢. The form of the function |¢t|~, however, is a bit contrary to

5.1. THEORETICAL BACKGROUND 123

what we would expect for an ETT-to-ITT-based translation, as it takes terms as input, rather than
typing derivations. To address this discrepancy, we can introduce a hypothetical function D(-) that
returns (some representation of) a typing derivation given any well-typed input term. Then, we
could define | - | as our ETT-to-ITT-based translation from typing derivations to terms, with the
full translation from Lean to Lean™ being the composition of these two functions:

1™ = D@)Ip

The soundness of such a translation would follow from the soundness of the translation |- |, defined
w.r.t. the subject term of the root node of the input derivation tree.

The translation | - | itself can be considered a composition of a translation D_ () from Lean
derivations to Lean_ derivationﬂ with a translation | - |5_ from Lean_ derivations to Lean™ terms:

4l = D7 ()5

The soundness of this translation can then, in turn, be reduced to the soundness of the translation
| -]5,, which should largely follow from the results by Winterhalter et. al. — however, there are
certain discrepancies between our theories and the ETT and I'TT theories used in ett-to-itt that
we need to resolve in order us to be able to fully extend these results to our own translation.

Is ETT-to-ITT Enough?

One major remaining question here is: are the results by Winterhalter et. al. immediately applicable
to the kind of translation we are trying to achieve? Can we define a similar translation whose
correctness follows directly from the correctness proofs formalized in ett-to-itt? It would seem
that the answer is no — this work defined the translation w.r.t. a very specific extensional and
intensional theory, rather than in a possibly more modular way that could be applicable to a more
abstract class of theories obeying certain minimal properties. This is because the concrete theories
used in the formalization were specifically chosen to be minimal for a convenient first formal proof
of the feasibility of a translation from ETT to I'TT.

However, in general, given two theories that are parallel extensions of these minimal theories
(and thus differ from one another only in the presence of an equality reflection rule in the exten-
sional theory), it may in certain cases be possible to adapt these results without too much trouble.
Specifically, if these theories only include additional typing rules over those in the minimal theories,
we could define the translation such that it performs no transformation of the subject term in the
case of typing by this new rule, with the typing premises following by induction.

If the theories include new definitional equality rules, however, there may be a bit more work
work to do, in both defining the translation and proving its correctness. We need to show that,
for any additional definitional equality rules, it is still possible to compose a heterogeneous equality
proof between the LHS and RHS, assuming by induction that this is possible for any definitional
equality judgments in the premises (in the same manner as was done by Winterhalter et al).

The Lean_ /Lean™ theories are essentially the same as the minimal ETT/ITT theories used in
ett-to-itt, except for Lean’s use of the additional definitional equality rule [RED]|. So, we have
to show that it is possible to construct a proof of heterogeneous equality between two terms in the
case that they are identified by [RED]|. Similarly to the proof of this boils down to
showing that it holds in the case of a single-step reduction:

Conjecture 5.1.3. For all contexts A and all terms ¢, s, if A ¢ ~» s, then there exists some term
p such that A p:|t|” == |s|™.

9Such a function could be extracted from the constructive proof of [Theorem 5.1.4|that we provide above
in showing that Lean C Lean_ .

124 CHAPTER 5. DESIGNING A PRELIMINARY TRANSLATION

Like in the proof of [Theorem 5.1.7 to prove this property we have to consider each possible
single-step reduction case in turn and show that we can construct such a proof p. As such, the

proof of this property is likely to be fairly long and involved, especially in light of certain special
translation considerations such as recursor application alignment (described in , so for
the moment it is left as a conjecture. However, let’s take a look at what the proof looks like for the
reduction rule [CTX] in the case of application function head reduction.

Lemma 5.1.10. For all contexts A and all terms f, f',e, if AE f~ ffand AF p:|f|” == |f'|",
then there exists some term p’ such that A p': |fe|” == |f ¢|.

Proof. We know from the structure of our translation that there must be some €/, e, such that
e~ ¢} and e ~ e, with |fe|” = |f|” €] and |f' e|” = |f|” €. Since €} ~ €, by transitivity of
~, have by |Conjecture 5.1.2| that there is some A S p; : €] == €,. We also know by the inductive
hypothesis that there is some A F po : |[f|”™ == |f’|”. So, we can use an application congruence
lemma together with p; and ps to obtain a term A F p' i |f|~ €] == |f|” €. O

Revisiting Completeness

Assuming that [Conjecture 5.1.3|holds, the proof of the soundness property formalized in ett-to-itt
should be adaptable to showing the soundness of the | - \5_ translation, and hence the soundness

of the |- |~ translation. Showing completeness of this translation is less straightforward, however.
Recall the completeness conjecture:

Conjecture (Completeness). For all contexts A and terms 7" such that A =T : Sort u, if there
exists some term ¢ such that |A|~ F ¢ :|T|~, then there exists some term ¢’ such that A +¢ :T.

To show that our translation is complete, we start with the assumption that the translation of
some term A F T : Sort £ is inhabited in Lean™ by some term ¢, and we want to show that T is
also inhabited in Lean. Our first idea may be to attempt something similar to what we did in the
case of soundness, that is, show that the translation is complete w.r.t. Lean_ as the source theory,
and hopefully have this transfer over to completeness w.r.t. Lean as the source theory.

However, this doesn’t quite work: completeness w.r.t. Lean, would tell us that there exists
some t’ such that A E ¢ : T, but it does not necessarily follow that A F ¢’ : T this is precisely the
opposite direction of implication that we were dealing with in the case of soundness, and in general
we do not have that a well-typed Lean, term is also a well-typed Lean term, as Lean_ is more
expressive that Lean.

However, that isn’t to say that this approach doesn’t work: since we assume that 7" is Lean-
typeable, it may be the case that ¢ must have some derivation that is “compatible” with Lean, in
that it does not use any equality reflection steps that do not already correspond to valid definitional
equalities in Lean. In that case, we can perhaps replace these steps with uses of these definitional
equalities, recovering a Lean derivation from the Lean_ one. However, all of this may be somewhat
complex to formalize, so let’s try a different approach.

Let’s see if we can skip the middle ground of Lean_ in showing this property. Something we do
know is that since Lean™ C Lean, if A+ ¢ : |T'|7, then A F ¢t : |T|~. However, is it also the case
that A+ ¢: 7?7 Well, it would be if A+ T = |T'|~, which would allow us to apply [CONV]. We can
show that this is indeed the case, using the lemma below.

Lemma 5.1.11. For any terms ¢, s such that AFt=s, AF [t|” = |s|.

Proof. We proceed by induction on the derivation of A ¢ = s. Thanks to [RED], it suffices to
show that A F |t/ ~* t and A - ¢t = |s|7, and to show A F ¢t = |s|7, it suffices to show that
AF |s|7 ~* s (via [RED] and [SYMM]). We need only show one of A = [t|™ ~* tor A F |s|” ~* s,

5.1. THEORETICAL BACKGROUND 125

with the other following symmetrically. We can show that A F [¢|” ~* ¢ by demonstrating that
every subterm of |t|~ that is surrounded by a cast introduced by the translation can be reduced in
Lean such that the cast is eliminated.

We know that for any subterm ¢’ that has been surrounded by a cast between two types A and
B, ie. cast A B pt', where we originally had that A - A = B. By the inductive hypothesis, then,
we have A+ |A|~ = |B|~, and A+ cast A B pt' ~* ¢ follows from [KLR['Y] In this way, we can
eliminate all of the casts from the translated term via subterm reduction, giving us our result. [

A corollary of the above is that A F |T|~ ~»* T, using a similar proof to the inductive step (replacing
uses of the inductive hypothesis with [Theorem 5.1.11)), which gives us via [RED] that A - |T'|~ =T,
and hence our completeness result.

10This is because an application of the cast operation in Lean reduces to an Eq.rec application with
the provided type equality proof as the major premise and the cast term as the minor premise. In this case,
the type equality proof p is between the definitionally equal types A and B, so [KLR] applies and reduces
the recursor application to the minor premise ¢'.

Chapter 6

Lean4Less: Implementation Details

We have now contextualized our task of translating from Lean to Lean™ as a special case of a
translation from extensional to intensional type theory, essentially interpreting Lean as a restricted
extensional version of Lean™. The constructive proof by Winterhalter et. al. that we extended upon
to define a translation from Lean_ to Lean™ was useful in showing that a translation is theoretically
possible — however, for the purpose of verifying proofs with a smaller trusted kernel and eventually
exporting proofs from Lean to other proof assistants, we would like to have an actual translation
implemented that can be integrated within a larger translation pipeline (for instance, to translate
from Lean to Dedukti). So, how do we actually implement such a preliminary translation, and
how do we make it practical? Let’s start by trying to figure out what the general structure of
our implementation is going to look like, in terms of its expected input/output and our overall
translation strategy.

6.1 Implementation Framework

Adapting ett-to-itt?

Our first thought may be to simply adapt the work by Winterhalter et. al. which was formalized
in Rocq in the ett-to-itt repository [44]. Rocq provides some facilities for extracting OCaml
code from constructive proofs, which we could possibly use to extract a translation implementation
from the formalization. However, this is likely not a great idea, as the translation defined therein
was designed for the purpose of demonstrating that such a translation is possible and formally
verifiable, with minimal considerations made for its practicality. It includes several particularities
for the purpose of making the formal proof easier, often at the cost of making the translation itself
less practical (for instance, its choice of a heterogeneous equality representation that carries a proof
of equality between the LHS and RHS types).

One of the principal difficulties that we expect to encounter in adapting such an extracted
implementation for our purposes, however, is that the formally defined translation expects to take
typing derivations as input. It is often the case that typing derivations are very large and difficult
to work with, and this runs contrary to the standard kind of translation we want to do, in which
we take terms as input and produce terms as output. Typing derivations are not usually handled
explicitly in this way — they are often only implicitly accounted for in implementing typechecker
kernels or meta-programs, and as such most proof assistants (including Lean) provide no way to
access them directly, nor even any way to represent them to begin with.

127

128 CHAPTER 6. LEAN4LESS: IMPLEMENTATION DETAILS

6.1.1 Adapting a Lean Kernel

So, without easy access to the derivations that we would need as input for a formally verified trans-
lation, is there possibly another way to implement our translation? We would like our translation
to take terms as input, but, as we have made clear, operating just on the terms at a syntactic level
simply does not suffice for the kind of derivation-aware translation that we need. Ultimately, we
would like to implement a translation that is only defined on well-typed Lean terms, since well-typed
terms will always have some kind of derivation that we will hopefully be able to “access” somehow
in order to construct our translation.

In this respect, a promising approach is to base our translation on a typechecker kernel imple-
mentation. Proof assistant typechecker kernels are essentially programs that attempt to decide the
well-typedness of terms according to some theoretical typing judgment by effecting a kind of “search”
over possible typing derivations. This typing judgment may be explicitly laid out beforehand, guid-
ing the implementation of the kernel (as is the case for proof assistants like Andromeda [7], which
are designed around particular type theories), or it may be left more implicit in the typechecker
implementation itself (as was the case for Lean, initially). As such, the steps of the execution of a
typechecker kernel in deciding the well-typedness of a term can be seen as a “trace” of the implicit
typing derivation tree of that term, as these individual steps can be correlated with uses of specific
rules from the proof assistant’s underlying type theory.

For instance, consider the case of the typing of a A-function. Recall that Lean’s typing rule for
A-functions is:

AFA:Sort { Ajx:Able: B
Ayx:AF fun (z:A) =>e:(x:A) » B

[LAM]

This rule corresponds to the following subroutine in Lean’s kernel}

def inferLambda (e : Expr) : RecM Expr := match e with
| .lam name domType body bi => do
-- infer the type of ‘domType’, ensuring that it is some “Sort l°
-- (throwing an exzception otherwise)
ensureSort domType
-- add a new free variable to the typechecking context, with the fresh name “id°
let id M mkFreshId
withLCtx ((H getLCtx) .mkLocalDecl id name domType bi) do
let bodyType H inferType (body.instantiatel (.fvar id))
return (H getLCtx) .mkForall (#[.fvar id]) bodyType
| e => throw <| .other "expected lambda function"

This function receives as input a term that is expected to be a A-function, and starts by ensuring
the domain type lives withing some Sort ¢ by a call to ensureSort, which corresponds to the first
premise of the rule [LAM], It then descends into the binder, adding a fresh variable to the context
corresponding to the domain type, which is then used to instantiate the body of the function, whose
type is then inferred, with a call to inferType corresponding to the second premise. Finally, we
use this inferred type to construct the return value as a function type expression.

So how, exactly, can we possibly make use of the correspondence between typechecker execution
traces and typing derivation trees in our translation? There are two possible avenues we can consider.

Generating Typing Derivations?

The first possible approach is to modify a typechecker kernel to produce some literal representation
of an input term’s typing derivation, and have the main translation operate on this explicit Lean

!Note that we have simplified the function somewhat for presentation purposes.

6.1. IMPLEMENTATION FRAMEWORK 129

typing derivation as its input. This would involve constructing some representation of a typing
derivation as an explicit data structure, with constructors corresponding to each of the typing rules.
We could then modify inferLam to capture the typing derivation of the input A-function expression
in a construction of this derivation object that is built in parallel to normal typechecking. At a
higher level, we could then define the main phase of our translation as one that operates on these
derivation objects. Firstly, we would translate the derivation itself from a Lean derivation to a
Lean,_ derivation, along the lines of what was described in the constructive proof of .
Then, we would implement a translation from Lean_ derivations to Lean™ terms that is somewhat
in line with the kind of program that could be extracted from ett-to-itt.

Doing our translation in this way has the benefit of clearly delineating the different translation
steps w.r.t. the different theories involved, which would result in an implementation that is easy to
formally verify. Additionally, the typing derivations produced by our modified typechecker could
also possibly be useful outside of just the context of proof translation.

Translating in Parallel to Typechecking?

Alternatively, we could structure our translation as one that uses a modified kernel to directly pro-
duce the translated terms, rather than using some intermediate derivation representation. Since all
the information needed to produce typing derivations is already present at typechecking runtime, we
could perhaps instead produce our translation directly in-place during the process of normal type-
checking, having reconstructed the final translated term by the time that typechecking completes.
With this approach, type inference would correspond to translation, and definitional equality check-
ing would correspond to equality proof generation, (in line with the way our translation is originally
defined on typing/defeq derivations).
For instance, in this case our modified inferLam subroutine would look something like:

def inferLambda (e : Expr) : RecM (Expr x Expr) := match e with
| .lam name domType body bi => do
let (_, domType') H inferType domType
-- 'p’ 18 a proof that the inferred type of “domType'’ 1is equal to some “Sort u’
let p H ensureSort domType'
let domTypeCast' H applyCast p domType'

let id H mkFreshId
withLCtx ((H getLCtx) .mkLocalDecl id name domTypeCast' bi) do
let (bodyType, body') H inferType (body.instantiatel (.fvar id))
return
((H getLCtx) .mkForall (#[.fvar id]l) bodType,
(E getLCtx) .mkLambda (#[.fvar id]) bod')
| e => throw <| .other "expected lambda function"

This function operates in much the same way as the original one, however it has an extra return
value of type Expr that represents the translated input term, with the return type of the top-level
inferType function being similarly modified. We start by calling inferType on the domain type
of A-function, extracting its Lean™ translation from the second return value. Then, we ensure that
the type of the translated domain type is some Sort ¢, with ensureSort now returning a proof
term corresponding to this equality. This proof term is used to apply a cast around the translated
domain typ ensuring that it types as Sort ¢ in Lean™ as well. Finally, we descend into the

2Note that in our actual implementation, rather than always applying casts, we attempt to only apply

them where necessary (that is, where expected types and inferred types are not already definitionally equal
in Lean™; see [Section 6.3| for more details).

130 CHAPTER 6. LEAN4LESS: IMPLEMENTATION DETAILS

binder, translating the body expression and inferring its type, which we use to construct our return
value, consisting of both the inferred function type and the translation of the A-function to Lean™.

This approach is perhaps somewhat less elegant and straightforward to verify than the one using
explicit derivations. In particular, as we are translating directly from a Lean derivation, rather than
a Lean_ one, such an implementation will not line up neatly with the ett-to-itt formalization, as
we will have to account for the derivation-level translation from Lean to Lean_ simultaneously with
the translation from Lean_ derivations to Lean™ terms. However, this is easier to implement as a
first prototype translation, as we do not have to concern ourselves with multiple translation steps
and a separate intermediate representation of typing derivations. So, this is the approach that we
have decided to go with for our preliminary translation from Lean to Lean™.

Lean4Lean

The specific kernel implementation that we choose to go with for our translation is taken from
“Leand4Lean” [12|, which is a project to write a formally verified kernel implementation and accom-
panying metatheory for Lean along the lines of the MetaRocq project [35]. The Lean4Lean kernel
implementation is essentially a direct port of the original Lean kernel’s C++ code into LeanE].
The implementation makes use of Lean’s monadic do notation to imitate an effectful, imperative
program with global state that directly corresponds to the original C++ kernel implementation.
The original motivations for implementing Lean4Lean’s typechecker in Lean itself were to make
it possible for the implementation to be formally verified w.r.t. Lean’s metatheory. In the context
of possibly adapting it for proof translation, however, this fact is especially convenient for our pur-
poses. In general, we would like to implement our translation in Lean, as doing so has a number
of benefits. Firstly, as Lean is a partly bootstrapped language, many of its higher-level features are
implemented exclusively within Lean, which use a number of helper functions for traversing and con-
structing expressions, manipulating free/bound variables, modifying the typechecking environment,
etc., that will be useful to us in our own implementation. Also, Lean’s orientation towards formal
proof and typechecking affords us certain “soft” guarantees in the correctness of our implementa-
tion. Specifically, its strict typing, higher-order functional programming style, termination checking
and monadic facilities for manipulating global state and context provide more confidence during
development by eliminating certain classes of errors. An implementation in Lean also leaves the
door open for an eventually fully verified translation, on account of Lean’s capabilities as a general
theorem prover. Formally verifying a translation could also have some important meta-theoretical

implications, (as explained in [Section 7.2.2]).

6.2 Implementation Details

Our translation from Lean to Lean™, which we call “Lean4Less”E], is adapted from Lean4lLean’s
typechecker kernel implementation (as was motivated above), which implements a bidirectional
typechecking algorithm using the following three primary mutually recursive functionf]:

-- type inference

def inferType (e : Expr) : RecM Expr :
-- definitional equality check

def isDefEq (t s : Expr) : RecM Bool :
-- weak-head normalization

def whnf (e : Expr) : RecM Expr := ...

3In fact, the kernel code snippets used above were taken directly from Lean4Lean’s kernel implementation
“https://github.com/Deducteam/LeandLess
®These can be found in the file containing the kernel’s main typechecking subroutines, TypeChecker. lean.

https://github.com/Deducteam/Lean4Less

6.2. IMPLEMENTATION DETAILS 131

e inferType is a type inference function that checks that e is well-typed, throwing an error if
it is not, and returning its inferred type if it is.

Whether or not it returns successfully effectively decides Lean’s typing judgment. Specifically,
it has the specification that under some typing context A, for all terms t, inferType t

returns successfully if and only if there exists some T such that A+t : T.

e isDefEq returns whether or not the well-typed terms t and s are definitionally equal ac-
cording to Lean’s definitional equality judgment. Notationally, this means that under some
typing context A, for all terms t and s, isDefEq t s returns true if and only if At = s.

e whnf reduces an expression to its weak-head normal form (WHNF). It is a subroutine of
isDefEq, where terms must sometimes be (partly) reduced to determine if they are defini-

tionally equal. Under some typing context A, if whnf t successfully returns some term s,
this means that the reduction relation A ¢ ~~* s holds.

These functions live inside of the potentially non—terminatin RecM monad, which enables stateful
side-effects such as updating a cache of previously inferred types and incrementing a unique name
generator (used for the naming of free variables), and which provides a monadic context that keeps
track of the current constant declaration environment, free variable context, and universe level
parameters.

These three functions correspond to the three relations efining Lean’s type theory, which appear
in the Lean typing derivations that we have defined our translation on. As such, we would expect
each of these functions in our modified typechecker to additionally output terms that correspond to
the translation output semantics that we have established for the typing relation that each function
decides. Therefore, we can imagine modifying each of the functions as followsﬂ

def inferType (e : Expr) : RecM (Expr x Expr) := ...
-- " translated °
def isDefEq (t s : Expr) : RecM (Bool x Option Expr)
-- " proof of 't
def whnf (e : Expr) : RecM (Expr x Expr) := ...
-- " proof of ‘e == whnf e’

Il o

h
n
[

The inferType function now also returns a translated version of the input expression that has
essentially been “injected” with type transports where required by typing constraints (see below)
— note that the first return value is the original inferred type return value, and we maintain that
this inferred type is Lean™ -typeable (that is, it is a translation to Lean™ of the type that would
have normally been inferred by Lean4Lean’s inferType function). Formally, this semantics can be
presented with the following lemma:

Lemma. If AFe: T, then inferType e = (T",¢), with AF ¢ : T/, Abte=¢€¢ and AT =T".

The isDefEq function now also returns a generated proof of equality between the input terms,
which are expected to already be Lean™-typeable. It has the following formal specification:

6Lean’s type theory is known to be non-terminating as a consequence of K-like reduction, proof irrelevance,
and impredicativity, with a general result having been demonstrated by Coquand and Abel [1], which has
been verified empirically by Carneiro [12].

"These are not quite the actual return values of our functions; we have simplified things here for the
initial presentation. In light of certain output optimization considerations, we actually only optionally
return additional Expr values. See for more details.

132 CHAPTER 6. LEAN4LESS: IMPLEMENTATION DETAILS

Lemma. fAF¢: T, AF7s:S5, and A+t =s, then isDefEq t s = (true, Option.some p),
with AF p:t == s.

Lastly, the whnf function also returns a proof of equality between the Lean™-typeable input
term and its weak head normal form, with the following specification:

Lemma. If AF7 ¢: T, then whnf ¢t = (¢,p), with A ¢ ~*t' and AF p:t ==t

As required by the general ETT-to-ITT translation, both isDefEq and whnf return heferoge-
neous equality proofs using the type HEq. Note that whnf must also return a heterogeneous equality
proof because the inferred type of the input term may change during reduction[ﬂ.

The proof term returned from isDefEq or whnf can be interpreted as a “trace” of the type-
checker’s steps in deciding definitional equality/performing WHNF' reduction. For instance, if the
typechecker determines that the applications £ a and £ b are definitionally equal, where proof
irrelevance was used at some point when comparing a and b to produce a proof term p : a = b,

Lean4Less will construct a proof using Lean’s congrArg lemma in order to produce the proof term

congrArg f abp : fa=f bﬂ This corresponds to our definition of the theoretical ETT-to-
ITT translation in the case of definitional equality by [CGR-APP].

The Congruence Lemmas

The translation defined by Winterhalter et. al. in ett-to-itt makes use of a set of “congruence
lemmas” that are used to compose equality proofs between terms from the equality proofs of their
corresponding subterms in the function type, A-function, and application cases. For the purposes
of our translation, we require a similar set of lemmas, expressed in Lean as follows:

theorem forallHEgABUV' {A B : Sort u} {U : A = Sort v} {V : B =+ Sort v}
(hAB : A==B) (hUV : (a : A) » (b :B) »a==Db-+Ua==VD)
((a: 4) »~Ua) ((b:B)+»Vb) := ...
theorem lambdaHEgABUV' {A B : Sort u} {U : A = Sort v} {V : B = Sort v}
(f : (a:A) ~»Ua) (g: (b:B)=+Vh)
(hAB : A ==B) (hfg : (@ : 4) » (b : B) a==b - f a==ghb)
(fun a => f a) == (fun b => g b) := ... -- (uses funezt)
theorem appHEQABUV' {A B : Sort u} {U : A » Sort v} {V : B + Sort v}
(hAB : A ==B) (hUV : (a : A) = (b :B) =a==b=+Ua==VDb)
{f:(@:4 ~+Uar{g: (b:B)=+Vhb}rd{a: A} {b : B}
(hfg : £ == g) (hab : a == b)
:fa=gb = ...

Note that appHEQABUV' contains the additional hypothesis hUV that allows us to equate U and

V in its proof, which was not required by the equivalent application congruence lemma used in
ett-to-itt. Including this hypothesis enables us to prove the lemma without the presence of
domain- and codomain-annotated A-function and application constructors, which was a requirement
on the source ETT syntax imposed by [43] in order to be able to prove a version of this lemma

8For instance, if we have types A, B such that A - A = B but A ¥ A = B, and terms p,t such that
AF p: A= Band AF t: A, then, thanks to K-like reduction, we have A F @cast A B pt ~* t, with
A @cast A B pt: B, so to state an equality between @cast A B pt and ¢ in Lean™, we must use
heterogeneous equality.

In reality, our implementation always generates heterogeneous equality proofs, using a heterogeneous
version of congrArg, though it should be technically feasible to implement an optimization that generates
homogeneous equality proofs instead wherever possible.

6.2. IMPLEMENTATION DETAILS 133

that does not carry this hypothesis{lj]. While it may seem feasible to derive this hypothesis from the
equality of the types of £ and g implied by hfg, this is in fact not possible in Lean without the
addition of a “forall-n” axiom with the following signature:

-- (not used by our translation)
axiom forallEta : ((a : A) = Ua) = ((a: A +Va =+U=YV

Assuming such an axiom breaks some theoretical properties of Lean, in particular its interpretation
under a cardinality model where all types of equal size are considered equa]E.

We also need the proof irrelevance axiom and its derivable extension to heterogeneous equality
in the case of provably equal propositional types. For convenience, we also add a heterogeneous
cast function:

axiom prfIrrel {P : Prop} (pgq : P) : p=g¢q
theorem prfIrrelHEq {P : Prop} (p q : P) : p==q := ...
theorem prfIrrelHEqPQ {P Q : Prop} (hWPQ : P == Q)
p:P) (q:Q :p==q := ...
def castHEq {A B : Sort u} (h : A ==B) (a : A) : B :=
cast (eq_of_heq h) a

These constants, along with all of their dependencies, need to be enumerated to our translation to
be added to the translation output environment first, since any later definitions may reference them
as a result of translation. Importantly, they must already be well-typed in Lean™ and should not
require translation themselves, since this would result in cyclic self-references.

Inserting Type Transports

The modified inferType function translates the input term by “injecting” type casts around sub-

terms whose inferred type is not definitionally equal to its expected type in Lean™. Specifically,
this can occur wherever uses of the [CONV] typing rule are implicitly invoked by the kernel. Such
conversions checks correspond to calls to isDefEq that check that two type expressions are defini-
tionally equal, ultimately arising from Lean’s particular typing rules that originate from either from
either user-provided annotations or typing restrictions imposed by certain type inference rules. The
type casts require proofs of equality between the expected and inferred types, which are computed
in the second return value of isDefEq (more details on the computation of these equality proofs
are provided later).

Let’s take a closer look at the particular typing rules that can generate a cast application in
our translation output. Recall first the rules for the typing of A-functions and function types:

AFA:Sort ¢ Ajx:Abe:B AFA:Sort £ A,xz:AF B: Sort V
[LAM] [ALL]
Ajz: At fun (z:A)=>e:(x:A) =+ B AF (z:A) -+ B:Sort (imax £ ¢')

These rules require the domain types (and codomain type, in the case of [ALL|) to be sorts. Together
with [CONV], this weakens to the assumption that the binder types have types that are definitionally

1For a verified translation, using this hypothesis requires a proof that it can always be inhabited, which
has not been shown by Winterhalter et. al. However, we have not encountered any problems proving this
hypothesis on-the-fly as a part of our translation.

HUTf we assume this axiom, we can show a counterexample to the cardinality model

as follows: Let A :=Fin 2, and let U := fun x => if x = 0 then Bool else Unit and
V := fun x => if x = 0 then Unit else Bool. Then, we have the function type cardinalities
[(a : A) = Ual =[(a: A =+ Val =2, allowing us to derive U = V from forallEta. By applica-

tion congruence U 0 = V 0, which contradicts that |U 0] = 2 # |V 0] = 1.

134 CHAPTER 6. LEAN4LESS: IMPLEMENTATION DETAILS

equal to some Sort ¢. For instance, recall that we can use [ALL] and [CONV] to derive the following
equivalent rule:

AFA:T AFT=¢Sort { Ax:A-B:U A,z:AF U= Sort ¢
AF (z:A) » B: Sort (imax ¢ /)

[ALL']

from which it is more evident how definitional equality may figure into the judgment of the well-
typedness of a function type expression. This rule is much closer to how the kernel function
inferForall is actually implemented:

def inferForall (e : Expr) : RecM Expr := match e with
| .forallE name domType codomType bi => do
let domTypeSort H inferType domType -- premise 1
ensureSort domType -- premise 2
let (Expr.sort 11) := domTypeSort | unreachable!
let id H mkFreshId
withLCtx ((H getLCtx) .mkLocalDecl id name domType bi) do
let codomType := codomType.instantiatel (.fvar id)
let codomTypeSort H inferType codomType.instantiatel -- premise 3
ensureSort codomType -- premise 4
let (Expr.sort 12) := codomTypeSort | unreachable!
return .sort <| mkLevelIMax s.sortLevel!
| e => throw <| .other "expected lambda function"

W.r.t. the translation, each of the definitional equality premises corresponds to a place where a
cast application may be inserted around a subterm. Specifically, we will insert a cast around the
subterm typed as the LHS of the premise (according to a preceding premise) to ensure it types as the
RHS instead. In the case of [ALL’], if it turns out that the translation of T is not definitionally equal
to some Sort £ in Lean™, then our translation will have to include a cast around A, transporting
its type from T to Sort /.

Also recall the rule for the typing of applications:

AFf:(x:A)+ B Ale:A

[APP]
At fe: Ble/z]

Here, the duplication of the type A in the premises effectively requires that the type of e is defini-
tionally equal to the domain type of the function f. Additionally, we require that the function f has
a type that is equivalent to some function type. Again via [CONV], this rule can be equivalently
expressed as:

AFf:T AFT=(x:A)»B Abe:U AFU=A
AF fe: Ble/x]

[APP|

whose premises are again much closer to the conditions that are actually checked by the kernel. As
it relates to our translation, the premises of the rule [APP’] imply that both the function f and
argument a might possibly have a cast applied to them: in the case of the function f, we may
need to explicitly transport its type to be a function type, and in the case of the argument a, we
may need to explicitly transport its type to match the domain type of f.

Lastly, recall our rule for typing let binders:

AFA:Sort { AFe: A Ax:A=ek-b:B
AF let (x:A) = e in b: B [z/€]

[LET]

6.2. IMPLEMENTATION DETAILS 135

Thanks to [CONV], we can equivalently express this rule as follows:

AFA:T AFT=Sortl{ AFe:U AFU=A Ajz:A=ebb:B

[LET']
AF let (z:A) == ein b: B [z/e]

In terms of our translation, we may apply a cast around either the type A to transport it to some
Sort /¢, or we may apply a cast around e so that it matches its annotated type A. A similar
translation also applies w.r.t. our translation of Lean constant contexts, where declared constant
type signatures may be cast to ensure that they are of some Sort ¢, and the bodies of defined
constants (that is, Lean definitions and theorems) may also be cast to match the annotated constant
type signature.

Proof/Translated Term Representations

To build equality proofs as part of the definitional equality-checking routines, we use a custom data
structure EExpr to represent our proof, defined in the file EExpr.lean:

/- - Structured data representing equality proof exzpressions. -/
inductive EExpr where

-- prflIrrel aziom

| prfIrrel : PIData EExpr -+ EExpr

-- congruence lemmas

| lam : LamData EExpr -+ EExpr

| forallE : ForallData EExpr - EExpr
| app : AppData EExpr -+ EExpr
-- free variable equality assumption
| fvar : FVarDataE -+ EExpr

-- HEq.trans

| trans : TransData EExpr -+ EExpr
-- HEq.refl

| refl : ReflData -+ EExpr

-- reversed proof

| rev : EExpr - EExpr

The inductive type has constructors for equality proofs using the proof irrelevance axiom, each of
the congruence lemmas, free variable equality assumptions (bound by certain congruence lemma
arguments), transitivity for chaining proofs together (needed for composing proofs corresponding
to reduction sequences), reflexivity proofs (which must be used sometimes), as well as a constructor
that flags equality proofs for reversal.

Using such a purpose-built representation for proof terms has two main advantages. Firstly, it
centralizes the production of proof terms via the EExpr.toExpr function, allowing us to use the ob-
ject representation when constructing proofs inside of the modified definitional equality subroutines,
deferring the actual construction of the Lean.Expr proof term to the topmost call producing the
typecast, which is much more convenient than building the Lean.Expr proofs in-place. Secondly,
it enables certain post-hoc optimizations, such as lambda-casting (see that operate on
the structure of the proof after it has been produced.

We also use the “pseudo-refinement type” PExpr to represent already-translated expressions,
taking Expr to be the type of expressions that have yet to be translated. Using this “safety wrapper”
can help avoid certain errors. For instance, it is important for the correctness of the translation
that the terms passed as input to isDefEq and whnf, and the output inferred type of inferType

136 CHAPTER 6. LEAN4LESS: IMPLEMENTATION DETAILS

and its translated argument are all well-typed in Lean™. As such, these functions have types that
look closer to the following{T_Z}

def inferType (e : Expr) : RecM (PExpr x PExpr) := ...
def isDefEq (t s : PExpr) : RecM (Bool x Option EExpr) := ...
def whnf (e : PExpr) : RecM (PExpr x EExpr) := ...

e inferType expects as input a term e that is Lean-typeable, and thus has type Expr. It

outputs an inferred type and translated version of e, both of which are Lean™-typeable,
which indicated by the fact that they have type PExpr.

e isDefEq expects two Lean™ -typeable terms t and s as input, as enforced by the type PExpr.
It outputs a judgment of definitional equality, as well as an EExpr representing a Lean™ -
typeable proof of heterogeneous equality between t and s.

e whnf expects a Lean™ -typeable term e as input, again enforced by the type PExpr. It
outputs a Lean™ -typeable weak-head normal form of e, as well as an EExpr representing a
Lean™-typeable proof of heterogeneous equality between e and its weak-head normal form.

Producing Equality Proofs

As we have mentioned, the modified isDefEq function produces a proof of heterogeneous equality

between the LHS and RHS terms that is well-typed in Lean™. In doing so, it calls a number of
subroutines that correspond to the various rules of Lean’s definitional equality judgment. Con-
sidering the particular rules we are eliminating via our translation, most of these functions — for
instance those corresponding to congruence identities — are not very “interesting” , in that they
just combine and propagate equality proofs that are produced by their own function calls, and do
not actually produce “base level” proofs that generate proof terms directly corresponding to the
eliminated definitional equalities. The three functions that do generate such “base proof terms” are
isDefEgProofIrrel, toCtorWhenK, and isDefEqFVar; our modifications to these functions are
described below.

Firstly, we adapt the kernel function isDefEqProofIrrel, which checks whether two proof terms
are equal by proof irrelevance by checking that their propositional types are definitional equality:

def isDefEqgProoflIrrel (t s : Expr) : RecM (Option Bool) := do
let tType H inferType t
if !(H isProp tType) then
-- [PI] is mnot applicable
return Option.none
let eql H isDefEq tType (H inferType s)
return (Option.some eql)

We modify this function to generate a proof of equality between the proof terms using the prfIrrel
axiom as follows:

def isDefEqProoflIrrel (t s : PExpr) : RecM (Option (Bool x Option EExpr)) := do
let (tType, _) # inferType t
let (sType, _) E inferType s
if (¥ isProp tType) then

12Note that these are, again, not the final type signatures for these functions (which can be found in

ecion 63

6.2. IMPLEMENTATION DETAILS 137

-- [PI] 4s mot applicable

return Option.none
let (eql, pi) H isDefEq tType (H inferType s)
if not eql then

return (Option.some (false, Option.none))
let some p := pi | unreachable!
let mut p := default
if H isDefEqLeanM t s (recDepth := 15) then

p := ... -- construct a proof of 't = s using “prflirrel’
else
p := ... -- construct a proof of "t == s using “prflrrelHEq’

return (Option.some (true, Option.some p))

If the propositional types are not already Lean™-defeq, we will need to use the proof irrelevance
lemma prfIrrelHEQPQ, which takes this explicit proof of equality between the LHS and RHS
propositional types, and produces a heterogeneous equality proof. Otherwise, we can return a proof
using prfIrrelHEq, which assumes that the LHS and RHS propositions are the same (but which
still uses heterogeneous equality for compatibility with the rest of the translation). There is also a
check that avoids producing an equality proof (that is, returning none) in the case that the proof
terms can be shown to be equal in the Lean™ kernel after a small number of steps.

We generate a similar proof in the case of K-like reduction via the function toCtorWhenK (which
is called by the recursor reduction function inductiveReduceRec)

def toCtorWhenK (rval : RecursorVal) (e : Expr) : m Expr := do
assert! rval.k -- ensure this is a K-like type

-- apply the K-like type's unique constructor to obtain “ctordpp’
let type H inferType e
let (ctorApp, ctorName) H mkNullaryCtor type rval.numParams

-- make sure that the indices of the inferred types match
unless H isDefEq type (H inferType ctorApp) do return (e, false)

return (ctorApp, true)

Given as input a recursor major premise e of a K-like inductive type toCtorWhenK effectively
“rewrites” e to the unique constructor application implied by the inferred K-like type of e, which
is then substituted in for e in the term being reduced in order to continue the reduction.

Our modification of this function generates a proof of equality between the input e and the out-
put constructor application by returning a proof obtained by calling the modified isDefEqProofIrrel
function:

def toCtorWhenK (rval : RecursorVal) (e : Expr) : m (Expr x Option EExpr) := do
assert! rval.k

let (type, _) H inferType e
let (ctorApp, ctorName) H mkNullaryCtor type rval.numParams

unless H isDefEq type (H inferType ctorApp) do return (e, false)
let (true, Option.some p) H isDefEqProofIrrel e ctorApp | unreachable!

return (ctorApp, Option.some p)

138 CHAPTER 6. LEAN4LESS: IMPLEMENTATION DETAILS

Another place where we may generate base equality proof terms is in equating pairs of free vari-
ables introduced by the variable-binding proof arguments of certain congruence lemmas: specifically,
the argument hUV in forallHEQABUV' and appHEgABUV', having the type

hiV : (a : A) = (b : B) »a==b-Ua==Vhb,
and the argument hfg in lambdaHEqABUV' having the type
hfg : (a : &) - (b : B) »a==Db -~ f a==gb.

When generating the proof terms for these arguments, we introduce two separate variables a : A
and b : B into our context, one for each domain type. Additionally, we introduce into our countext
a variable representing an equality proof between a and b, hab : HEq a b, which we may need to
use to construct the proof. We “register” the variables as being provably equal in the translation’s
monadic context:

structure TypeChecker.Context : Type where

-- stores fvar triples as the map (z : 4), (y : B) -> (hzy : = == y)
eqFVars : Std.HashMap (FVarId x FVarld) FVarld := {}

This corresponds to the triple-valued context computed by the “Pack” function of Winterhalter et
al. [43]. We add a free variable-specific equality check, isDefEqFVar, that returns an equality proof
using the relevant variable equality hypothesis:

def isDefEqFVar (idt ids : FVarId) : RecM (Option (Bool x (Option EExpr))) := do
if let some d := (H readThe Context).eqFVars.geti (idt, ids) then
return (Option.some (.true, some (EExpr.fvar d)))
else if let some d := (H readThe Context).eqFVars.geti (ids, idt) then
return (Option.some (.true, some (EExpr.rev (EExpr.fvar d))))
return Option.none

Recursor Application Alignment

There is one particularly tricky aspect that we will have address in our translation relating to the
reduction of recursor applications in Lean. In the process of reducing a recursor application, the
kernel will first attempt to simplify the major premise to a constructor application so that it can
extract the necessary fields to perform the reduction by applying a constructor-specific recursor
reduction rule. It first uses whnf to reduce the major premise to its weak-head normal form,
followed by toCtorWhenK to rewrite it as its unique constructor application if its type is that of a
K-like inductive with valid indices. In the process of doing so, the type of the major premise may
change such that it is no longer Lean™-defeq to its original inferred type.

For instance, as we mentioned in the |[KLR] enables a cast application of the
form @cast A B p t between Lean-defeq types A and B to reduce to the argument ¢ via K-like

reduction, which has the type A, rather than type B. This behavior carries over into our translation,
which can create some difficulties involving recursor reduction. Consider the following example:

axiom P : Prop

inductive T : (p : P) = Type where

| mk (p : P) : Tp

-- only needed so that T isn't a struct (and doesn't use struct-like reduction)

6.2. IMPLEMENTATION DETAILS 139

| extra (p : P) : Tp

-- T.rec.{u} : {p : P} =+ {motive : T p =+ Sort u} -+
-- (mk : motive (@T.mk p)) + (extra : motive (T.extra p)) = (t : T p)

def castEx (p q : P)
Q@T.rec p (fun _ => Bool) true true
(Gcast (T q) (T p) (congrArg T (L4L.prfIrrel g p)) (T.mk q))
= true
= rfl

In the type signature of castEx, both the LHS and RHS of the equality are already Lean™-typeable.
However, LHS and RHS are not Lean™-defeq (as the major premise of T.rec requires K-like re-
duction in order to reduce to T.mk q), so the proof by rfl is not correctly typed and requires
translation.

For this translation, Lean4Less will need to produce a Lean™ -typeable proof of equality be-
tween the LHS and RHS, which it will do by reducing the LHS via whnf, and in the process of
doing so, generate a proof that the LHS is equal to its Lean-reduct of true. When reducing the
recursor application, however, it first needs to reduce the cast application in the major premise,
which results in the term T.mk q : T q. This is a problem, because it no longer has the ex-

pected type of T p. Substituting in this new major premise, we obtain the recursor application

Q@T.rec p (fun _ => Bool) true true (T.mk q), which is no longer well-typed in Lean™ as we

expect the major premise to be of type T p, not T q. Consequently, we cannot construct a proof
about the equality of the old recursor application with the new one.

To recover a well-typed recursor application, we must do some post-hoc alignment of its initial
arguments to accept the new major premise type. We start by replacing its parameters with those
of the new major premise type (in this case, this consists of replacing the parameter p with q). We

then cast any dependent motives/minor premises as needed so they remain well—typedr__gl, replace
the old major premise with the new one, and lastly (if the resultant motive type is a function type)
cast as necessary any remaining dependent arguments following the major premise E We finally
construct a proof of equality between the old and new recursor applications, which is transitively
chained onto the returned equality proof. In terms of the above example, this amounts to producing
a proof of the following equality:

def castEx' (p q : P)
Q@T.rec p (fun _ => Bool) true true
(@cast (T q) (T p) (congrArg T (LAL.prfIrrel q p)) (T.mk q))

=> Bool) true true (T.mk q)

Q@T.rec q (fun

where the RHS reduces immediately to the final Lean-reduct of true.

It is also important to note that the casting of minor premises, which may happen as a result
of recursor application alignment, can break the normal reduction of recursors, which consists of
the direct application of minor premises to fields extracted from the major premise (if there are
any). Applying a cast around a A-function that would normally be immediately reducible upon
application via B-reduction can result in costly extra proof generation step to show that the cast
reduces to a A-function, and in some cases we have even observed this to lead to non-termination.

13In the implementation, this procedure can be found in the function replaceParams.
14This corresponds to the function replaceFType in the implementation.

140 CHAPTER 6. LEAN4LESS: IMPLEMENTATION DETAILS

In this respect an optimization for A-casting that we later describe (see seems to also
be relevant for translation correctness.

Similar considerations arise when eliminating on quotient types, when the Quot.lift and
Quot.ind quotient elimination operations are used Here, we also compute the weak head
normal form of the “major premise” quotient argument before applying the reduction, in order
to be able to extract the representative term from the quotient construction. As in the case of
recursor reduction, performing this normalization on the quotient argument may result in a quo-
tient type with different parameters, in which case it becomes necessary to post-align the quotient
eliminator application with the new type and cast any parameters (using the same helper function
replaceParams), transitively chaining a proof of equality between the old and new applications
onto the returned proof.

6.3 Optimizations

Output and runtime optimizations are particularly important for a tool like Lean4Less, to be able
to scale up the translation to large libraries and to have a reasonably sized output that avoids
redundancy. Additionally, it is important to have an efficient implementation that enables the
translation to complete within a reasonable amount of time without excessive memory requirements.
By virtue of being based on an efficient typechecker implementation, Lean4Less already enjoys many
output and runtime optimizations that transfer over from the kernel. For instance:

e Lean uses “lazy §-reduction” in its isDefEq check, avoiding the expansion of equal J-expandable
constant function application heads where possible, opting to first perform a comparison on
each pair of arguments. This translates to an output optimization in which we can also avoid
expanding these constants in the output when generating equality proofs.

e Lean’s proof irrelevance check is placed very early on in the isDefEq check, ensuring that
we do not needlessly compare proof subterms if we already know that the proof types are
equal (thus making the proofs definitionally equal by proof irrelevance). This also becomes
an output optimization, because we can immediately output an equality proof using the
prflrrel axiom, rather than possibly producing a larger proof resulting from a more detailed
comparison of subterms (in the case that the proofs can be shown equal without applying
[PI]).

e Lean’s kernel makes use of a cache for recording previously computed weak-head normal
forms. Lean4Less adapts this cache to store an equality proof in addition to the weak-head
normal form itself, and can be queried to avoid unnecessary computations. This translates
into an output optimization since these redundant proofs will also share object pointers in
the .olean output.

Lean4Less also implements some optimizations of its own, described below.

Congruence Lemma Variants

When generating an equality proof, we may use the congruence lemmas presented in
in a variety of common ways that make certain proof arguments redundant. For example, when
producing an application congruence proof, we may use reflection proofs for the hAB argument to
appHEQABUV' when the function domain types are already Lean™-defeq, or we may ignore the bound

variables introduced within hUV arguments when the codomains U and V are not dependent. In

15This is implemented in the function quotientReduceRec.

6.3. OPTIMIZATIONS 141

such cases, we can use specialized variants of our congruence lemmas that allow us to ignore these
arguments. For instance, the following variant of application congruence assumes Lean™ -defeq
domain types and non-dependent (but non-Lean™-defeq) codomain types:

theorem appHEqUV {A : Sort u} {U V : Sort v}
(hUV : HEqQ U V)
{f:(@:A) -Ur{g:(M:4a »V}r{ab: A}
(hfg : HEq f g) (hab : HEq a b)
: HEq (f a) (g b) = ...

In the case that the arguments are also Lean™-defeq, we can simplify the lemma further:

theorem appFunHEqUV {A : Sort u} {U V : Sort v}
(hUV : HEq U V)
{f:(a: A ~Ur{g: (b: A =+V}: (a: 4
(hfg : HEq f g)
: HEq (f a) (g a) := ...

We use similar simplified variants of the A-function and function type congruence lemmas where
possible.

Avoiding Redundant Casts/Proof Terms

A property that our translation should ideally respect is that we only introduce applications of
cast in places where truly needed. That is, we should only wrap subterms with an explicit type
transport if it is strictly necessary to do so to ensure that they are well-typed in the context in which
they appear. Of course, this will only be the case if one of he eliminated definitional equality rules
[PI], [KLR], or [UNIT] is used in some “essential” way in a definitional equality judgment, where
removing these rules from our theory without casting the subterm would make the larger term in
which the subterm appears non-well-typed (or result in a definition whose body’s inferred type does
not match the annotated type signature).

One approach we could take here is to simply run the Lean kernel’s definitional equality check
whenever we encounter a situation where we might have to insert a cast in our translation. If
the original kernel ever uses an eliminated definitional equality, it can set a flag that it returns
to the calling function. If the flag it set, we will then call our modified isDefEq function to
generate the type equality proof and apply a cast to the subterm in question. Alternatively, we
could take the following approach: since our modified isDefEq function is based on the original
kernel implementation, we could instead call it immediately, and have it optionally return a proof
of equality between the LHS and RHS as its second return value, with the status optional value
being either Option.some _ or Option.none essentially taking the place of the flag in the previous

approach. With this approach, the type signatures of our isDefEq and whnf functions become:

def isDefEq (t s : PExpr) : RecM (Bool x Option EExpr) := ...
-- "~ proof of 't == s’
def whnf (e : PExpr) : RecM (PExpr x Option EExpr) := ...
-- ~ proof of ‘e == (whnf e)"

The invariant that we might maintain would be that we only return an Option.some value from
a definitional equality subroutine call if the two terms are definitionally equal (according to Lean)
and we actually make use of one of the eliminated definitional equalities when comparing them. A
return of Option.none indicates that the terms are already Lean™-defeq. In the case of isDefEq
being called as a type conversion check, this means that no typecast is required. In the case of
isDefEq or whnf being called to construct part of a larger type equality proof, this indicates that

142 CHAPTER 6. LEAN4LESS: IMPLEMENTATION DETAILS

a proof using HEq.refl _ suffices for an equality proof between the subterms, and also informs
which congruence lemma variant to use.

However, the invariant stated above is perhaps not exactly what we want — the fact that a
particular definitional equality was used at some point does not mean that it was strictly necessary
to use it in order for the overall identity to hold. For instance, consider the definition below:

variable (P : Prop) (p : P) (q : P) (T : P = Prop)
theorem redundantCastEx (¢t : T p) : T ((fun x => x) p) := t

This proof is already well-typed in Lean™, because we already have a definitional equality between
p and (fun x => x) p without using proof irrelevance, thanks to g-reduction. With the above
strategy, however, we would translate this as:

theorem redundantCastExTrans (¢t : T p) : T ((fun x => x) p) :=
cast (T p) (T ((fun x => x) p))
(congrArg T (prfIrrel p ((fun x => x) p)))
t

Here, we have unnecessarily introduced a cast around the definition body, with a type equal-
ity proof using prfIrrel to show the equality between the already-definitionally equal p and

(fun x => x) p.
Ideally, our isDefEq function would only return an Option.some value if the definitional equal-

ity does not already hold in Lean™— in other words, if the use of an eliminated definitional equality
was essential in its derivation. Precisely, we can state our ideal invariant as:

isDefEq t s = (true, Option.some p) <= AFt=sANAl t=s,

given some typing context A. This is a stronger invariant than our previous one (which we do not
quite have the notation to express symbolically). Satisfying it would require exhaustively searching
the space of possible Lean™ definitional equality derivations, which, if the terms being compared
are in fact not Lean™ -defeq, can be quite expensive. With respect to a typechecker implementation
(that would practically implement this search), this is tantamount to invoking a kernel’s worst-case
runtime, which may involve completely reducing both terms to their normal forms and comparing
them subterm-by-subterm.

Such an exhaustive search can prove to be prohibitively expensive in the worst case, which is
something that we have verified experimentally. So, we will necessarily have to make a trade-off
here. The approach that we have gone with is to have an initial check in isDefEq which checks

whether two terms are equal in Lean™ within a limited recursion depth, returning (true, none)
if so. With this recursion depth limit set to 15 (as opposed to the default value of 1000), we have
been able to verify that a great number of unnecessary casts/equality proof terms can be avoided
with minimal runtime/memory cost to the execution of the translation.

Domain Variable Sharing

As explained earlier, when generating the proof terms for variable-binding arguments of certain
congruence lemmas — specifically, the hUV parameter to forallHEqABUV' and appHEgQABUV', and

the hfg parameter to lambdaHEqABUV' — we introduce two separate variables; a : A and b : B
into our typechecking context, one for each domain type. This partly undoes an optimization
from the original typechecker implementation, where upon recursion into a binder term during
definitional equality-checking, a single variable is added to the context to simultaneously represent
both domains and substituted into the A-function body/function type codomain before a recursive
call. Then, within some later nested definitional equality check, checking equality in the kernel

6.3. OPTIMIZATIONS 143

between the variables instantiated on both sides is simply a matter of checking that they are
syntactically equal, as they are literally the same variable. This is a sound optimization because
both binding domains are checked to be Lean-defeq just before descending into the binder. However,
this optimization does not carry over into the modified version of this procedure in the Lean4Less
implementation, where the domain types may not be definitionally equal in Lean™. Therefore, in the
general case, we have to introduce two separate variables, keeping track of a propositional equality
between them with another variable which originates from the type of the hUV, hfg arguments to

the congruence lemmas, using the additional congruence-checking function isDefEqFVar, as was
described in [Section 6.21

However, we do retain this optimization in the special case that the domain types are Lean-
defeq, because it translates into an output optimization that allows us to avoid some unnecessary
proof generation. This case corresponds to the use of the following simplified congruence lemma
variants:

theorem forallHEqUV' {A : Sort u} {UV : A -+ Sort v}
(bUvV : (a : A) - HEq (U a) (V a))
: HEq ((a : A) = Ua) ((b: A) »VD)

theorem lambdaHEqUV' {A : Sort u} {UV : A =+ Sort v}
{f:(@:A) -Uar{g: (b: A »Vb} (hfg : (a : A) » HEq (f a) (g a))
: HEq (fun a => f a) (fun b => g b) := ...

theorem appHEqQUV' {A : Sort u} {UV : A = Sort v} (hUV : (a : A) -+ HEq (U a) (V a))
{f:(@:4A) -Uar{g: (b: A -»Vb}r{a:Ar {b : A}
(hfg : HEq f g) (hab : HEq a b)
: HEq (f a) (g b) = ...

In contrast with the fully general congruence lemmas these lemmas only to introduce a single variable
for the domain types of the hUV and hfg proof arguments. This optimization not only saves us
from including redundant proofs at the level of the application of these lemmas themselves, but
also precludes the generation of large, unnecessary proof arguments as a result of nested calls to
igDefEq that use the needlessy introduced proof hypothesis. For instance, a translation that does
not include this optimization may unnecessarily generate the following equality proof:

axiom P : Prop
axiom Q : P = Prop
theorem lamEqEx : ((p : P) = Q p) = ((p : P) = Q p) := rfl
theorem lamEqExBadTrans : ((p : P) = Q p) = ((p : P) = Q p) :=
L4L.castHEq
(LAL.appArgHEq' (Eq ((p : P) = Q p))
(L4L.forallHEqABUV' HEq.rfl (fun a b hab => L4L.appArgHEq' Q hab)))
rfl --" hUV argument

Determining that the proof in the body of the hUV argument can in fact be shown via HEq.refl
would then require a post-hoc investigation of the computed proof term to discover that it does not
contain any uses of prfIrrel. With this optimization, however, we introduce a single variable for
the p binder, which avoids the construction of a proof term entirely (and thus avoiding the cast
application as well).

M-Casting

When we apply a cast to a A-function, the equality proof that it uses must necessarily be an
application of a forallHEq congruence lemma, as in the following example:

144 CHAPTER 6. LEAN4LESS: IMPLEMENTATION DETAILS

axiom G : P =+ Prop
inductive H : (p : P) =+ G p = Type where
| mk (p : P) (g : Gp) :Hpg

def pushTest : (g : Gq) = Hqg :=fun (g : Gp) =>Hmkpg

def pushTestTransl : (g : Gq) » Hqg :=
L4L.castHEq
-- proof of (9 : Gp) ~Hpg==1(9:6q9)+Hqyg
(L4L.forallHEqABUV' (L4L.appArgHEq' G (L4L.prfIrrelHEq p q))
fun (gp : G p) (gq : G q) (a : HEq gp gq) =>
LAL.appHEQABUV' (LAL.appArgHEqQ' G (LAL.prfIrrelHEq p q))
(LAL.appArgHEq' H (LAL.prflIrrelHEq p q)) a)
fun (g : Gp) => Hmk p g

where we cast the entirety of the function with a single equality proof between the inferred and
expected function types, generating subproofs showing equality between the domain types G q

and G p and codomain types H q g and H p g. In doing so, however, we have lost the ability
to reduce applications of this function in Lean™— while the application pushTest g is S-reducible

for some g : G q (following the d-expansion of pushTest), pushTestTransl g is not, as the A-
function term has been surrounded by a cast which cannot be eliminated on account of the lack
of K-like reduction. This is not a problem for our translation, however, as the cast is between
Lean-defeq types, and so by K-like reduction we can generate a proof of propositional equality as
needed between the application of the cast A-function and its Lean™-typeable reduct:

Ocast ((x : Gp) »Hpx) ((x:Gq »Hqgx) _ (fun (x : Gp) => Hmk p x) g
-- reduces to -->
H.mk p (Gcast (G q) (G p) _ g)

(the cast around g here appears as a result of recursor application alignment, see [Section 6.2)).
However, this is an instance of “transport hell”, as we will need to generate a large proot to addition-

ally eliminate the cast surrounding the function. It would be convenient to instead directly encode
this reduced form within the body of the A-function, recovering S-reducibility of the application in
Lean™.

We can accomplish this by “pushing” the cast into the A-function itself, changing the domain
type and casting the body and bound variable within it as needed to produce a Lean™ term that
has the expected type:

def pushTestTrans2 : (g : Gq - Hqg :=
fun (g : G q) =>
Qcast
(H p (Gcast (G q) (G p) _ g)
(Hq g

(H.mk p (Gcast (G @) (G p) _ g)

In general, given a A-function fun (z: A) => t of type (x : A) + B and a generated equality proof
psuch that AF p:(z: A) » B = (x:A") » B, applying a cast to fun (x : A) => t using p effects
the following transformation:

fun (z:A) => t < fun (z: A") => @cast Blz/c(x)] B p1 (t[z/c(z)])

6.3. OPTIMIZATIONS 145

where we define ¢(z) := @cast A’ A py z, with the proofs p; and ps being extracted from the proof
p, with A,z : A'F py: Blz/e(z)] = B and AF py: A= A

Implementation-wise, when we apply a cast to a A-function, we make use of the structured EExpr
data to guide the above transformation. Given an EExpr proof of equality between the inferred

and expected function types, representing a nested sequence of forallHEq lemma applications, we
recurse into the A-functions in parallel to the structure of this proof. Every A-function binder is
changed to bind to the corresponding RHS domain type, and all of the bound references within
the body are instantiated with a cast of the variable to the original LHS domain type in order
to maintain the well-typedness of the function body. After processing all of the binders, we then
cast the entire function body if necessary to match the RHS codomain type. This optimization is
implemented in Lean4Less in the “ smartCast” function.

Application Pre-Abstraction

One further optimization that we make is in avoiding the generation of long chains of application
congruence lemma applications in the construction of equality proofs, which can result from a
translation that too closely follows the original sequence of recursive definitional equality subroutine
calls. For instance, consider the definition below:

axiom (P : Prop) (p q : P)
axiom A : P = Nat -» Nat = Nat = Nat = Nat = Nat - Type
axiom A : Aq 000000

def absEx : Ap 000000 :=Aq

Translating this to Lean™ requires us to generate a proof of equality between the applications
Ag00000O0 and Ap O O0OOOOO. A naive implementation may compute the following
proof:

example : EQ (A q000000) (Ap0OOO0OOOO0) :=
(L4L.appFunHEq (A g 0000 0) (ApOOO0OO0O0)O
(LAL.appFunHEq (A g 0 0 0 0) (ApOOO0O0)O
(LAL.appFunHEq (A q 0 0 0) (Ap 00 O0)O
(L4L.appFunHEq (A q 0 0) (Ap 0 0) O

)

(LAL.appFunHEq (A q 0) (A p 0) O
(LAL.appFunHEq (A q) (A p) O

(LAL.appArgHEq A q p (LAL.prfIrrel q p))))))))

where we propagate the base proof of equality between q and p with a chain of application congru-
ences, one for each remaining argument. This is a natural first implementation of the translation
that follows the steps taken by the original kernel’s check for definitional equality of applications,
which iteratively checks the definitional equality of each pair of arguments in turn[gl. However,
notice that the latter arguments are already all Lean™-defeq, which makes the six additional uses of
application congruence seem extraneous, as the size of the generated proof should ideally only de-
pend on the number of arguments that are not already Lean™-defeq. Indeed, we can abstract both
applications to the function fun x : P => A x 0 0 0 0 0 O, applied to q and p respectively,
computing instead the equality between these [-equivalent forms This results in a much shorter
proof:

example : E (Aq 000000 (Ap0OOO0OOOO0O) :=
L4L.appArgHEq (fun (a : P) => A 2 0 0 0 0 0 0) (L4L.prfIrrel gq p)

16This is the function isDefEqApp in the Lean4Lean kernel.

146 CHAPTER 6. LEAN4LESS: IMPLEMENTATION DETAILS

In terms of the implementation, this optimization would suggest constructing a proof only after we
finish iterating over all of the pairs of arguments and registering which ones are not already Lean™ -
defeq, building an appropriate “pre-abstraction” and applying this to the abstracted arguments
to obtain a new LHS and RHS to construct a proof of equality between. However, a number of
additional complexities arise here. Firstly, consider the following definition:

inductive I : Type where
| left : P =+ 1I
| right : P = I

def ITB : I =+ Type

| .left _ => Unit

| .right _ => Bool

axiom B : (i : I) = Nat = Nat - Nat + ITB i -+ Nat -+ Nat - Nat - Type
axiom Bq : B (.left q) 000 () 000

def absDemoB : B (.left p) 0 00 () 0 0 0 := Bq

where the application head B has a dependent type, and we must construct a proof of equality
between B (.left q) 0 0 0 () 0 0 0 and B (.left p) 0 0 O () 0 O O. Here, the type of
the fifth argument depends on the first one, and so both arguments must be abstracted simultane-
ously for the application in the body of the abstraction to be well-typed. In the implementation,
this means marking an argument pair for abstraction if their types reference prior ones that have
already been abstracted, regardless of whether or not they are already Lean™ -defeq. This results in
the following proof:

example : B (I.left @) 000 () 000 =B (I.left p) 000 () 00 0 :=
L4L.appFunHEq ()
(LAL.appArgHEq' (fun (i : I) (a : ITBi) =>B 1 000 a 0 0 0)
(I.left q) (I.left p)
(L4L.appArgHEq I.left (L4L.prflrrel P q p)))

Note however that, in this particular case, we can avoid the extra abstraction if we perform a “deeper”
abstraction on the application, leaving the first arguments’ constructor intact, which enables us to
avoid the additional abstraction:

example : B (I.left @) 000 () 000 =B (I.left p) 00 0 (
L4L.appArgHEq' (fun (x : P) => B (I.left x) 000 () 000
q p (L4L.prflrrel P q p)

) 000 :=
)

For this reason, we implement a “deep” application abstraction that is able to recursively abstract
within application argument

An additional complexity arises in the case of a function of dependent arity. Consider the
following definition:

def ITC : I =+ Type
| .left _ => Nat -+ Nat -+ Nat = Type
| .right _ => Bool

axiom C : (1 : I) - Nat - Nat - Nat - ITC i

17This optimization can also likely be generalized to non-application cases; we have yet to explore this
possibility in more detail.

6.3. OPTIMIZATIONS 147

axiom Cq : C (.left @) 000000

def absDemoC : C (.left p) 0 0 0 0 0 0 := Cq

where the arity of the function C depends on the value of its first argument. Here, imagining for a
moment that we have not implemented the deep application pre-abstraction mentioned above, we
would attempt to abstract the .left _ arguments as a whole, resulting in the head function

fun (x : I) => Cx 0 0 0 0 O O, which is an ill-typed expression since the type of C x 0 0 0
is irreducible at ITC x. To resolve this, we immediately generate a proof of equality between the
partial applications thus far (C (.1left q) 0 0 0 and C (.left p) 0 O 0), perform an abstrac-
tion on these partial applications, and obtain a new head function
fun (f : Nat -+ Nat = Nat = Prop) => f 0 O 0. In essence, we have abstracted the applica-
tions at “two levels”, obtaining the new left- and right-hand sides:

-- LHS
(fun (f : Nat - Nat = Nat = Prop) => £ 0 0 0) ((fun x : I =>C x 0 0 0) (.left q))
-- RHS
(fun (f : Nat - Nat = Nat = Prop) => £ 0 0 0) ((fun x : I =>C x 0 0 0) (.left p))

allowing us to isolate as much as possible the base difference between the terms .left q and

.left p. Here again, we in fact can (and do) avoid the extra abstraction entirely by performing
a deeper abstraction on q and p themselves, but this kind of optimization is still useful in more
complex cases.

There is one last additional complexity that arises here, when the types of the abstracted partial
applications are not Lean™-defeq, which occurs in the following example:

axiom Q : Nat =+ P =+ Prop
axiom Qp : Q O p
axiom Qq : Q 0 q

def ITD : I = Type

| .left x => (n : Nat) » Q n x + Nat = Prop

| .right _ => Bool

axiom D : (i : I) - Nat - Nat =+ Nat -+ ITD i
axiom Dg : D (.left q) 0 0 0 0 Qg O

theorem absDemoD : D (.left p) 0 0 0 0 Qp O := Dq

In particular, this arises when a dependent domain type references a previously abstracted argument.
When this happens, we must also abstract these differing types in the type of the abstracted
application, taking into account the fact that these types may depend on previous binders in the
function type expression. This results in the following top-level applications:

-- LHS

(fun (aT : Nat = Prop) (f : (n : Nat) + aT n = Nat =+ Prop) (a : aT 0) => £ 0 a 0)
(fun n : Nat => Q n q)
((funx : T =>D=x000) (.left q))
Qq

-- RHS

(fun (aT : Nat = Prop) (f : (n : Nat) = aT n = Nat =+ Prop) (a : aT 0) => f 0 a 0)
(fun n : Nat => Q n p)
((fun x : T=>Dx 00 0) (.left p))
Qp

148 CHAPTER 6. LEAN4LESS: IMPLEMENTATION DETAILS

This generates another proof obligation between the abstracted domain types

(funn : Nat => Q n q) and (fun n : Nat => Q n p) . A key invariant that we maintain here
is that we are sure to always abstract sufficiently so that the LHS and RHS abstracted application
heads are always Lean™ -defeq.

Instantiation Avoidance

Two meta-functions that are particularly likely to contribute to large translation output sizes are
Lean.Expr.instantiatel, which instantiates the innermost bound variable (of De Bruijn index 0),

and Lean.Expr.replaceFVar, which instantiates a specified free variable. Instantiating variables
should be avoided as much as possible because doing so can lead to the proliferation of several similar
terms that differ only at the instantiated locales, but nevertheless cannot share object pointers in
the output representation (because they are not exactly the same). This is relevant especially in
the application congruence case, where the computed equality proof terms reference domain and
codomain types that are progressively instantiated as we tack on more arguments in our proof, a
pattern which is illustrated by the example below.

Let us briefly adopt the notation E[n0, nl, ... nm] to signify the instantiation of bound
variables 0 to m in E with the expressions n0 to nm. Suppose that we are generating a proof of
equivalence between the applications £ a b ¢ and £' a' b' c¢', where both £ and f' have the
following type:

£f, £ @ (x: X > (y : YIxl) -> (z : Z[yl) -> Flx, y, z].

To generate this proof, we must use application congruence lemmas, which take as arguments the
domain and (possibly dependent) codomain types, which we will refer to with the symbols A and
U, respectively. The proof will be generated in left-to-right order of the arguments, generating the
following sequence of domains and codomains:

fa=1fhb

--> 4 =X

--> U := fun (z : X) => (y : Y[z]) -> (2 : Z[y]) -> Flz, y, 2]
fab

--> 4 :=Y[a]

--> U := fun (y : Y[a]) => (2 : Z[y]) -> Fla, y, 2]
fabec

--> 4 := Z[b]

-->U := fun (2 : Z[b]) => Fla, b, 2]

Here, we have instantiated Y, Z, and F in several different ways, where none of these distinct instan-
tiations can share a common object pointer in the output. In our translation, we have implemented
an optimization in which we generate the following abstracted helper types as follows as an initial
step in our proof computation, generating let-bindings in the output proof term as follows:

let F' := fun (x : X) (y : Y[x]) (z : Z[yl) => Flx, y, z]
let Y' := fun (x : X) => Y[x]
let Z' := fun (x : X) (y : Y[x]) => Z[y]

Using these abstracted types allows us to obtain a much higher degree of sharing in our output:

(fun (x : X) (y : Y[x]) (z : Z[yl) => f xy z) a

--> 4 =X

->U :=fun (z : X) => (y : Y' z) -> (2 :Z'"y) ->F' zyz
(fun (x : X) (y : Y[x]) (z : Z[yl) => £ xy z) ab

6.3. OPTIMIZATIONS 149
--> 4 =YY" a

->U :=fun (y : Y a) => (2 : Z' y) ->F' ay 2z
(fun (x : X) (y : Y[x]) (z : Z[y]l) => f xy z) abc
--=> 4 :=7Z"b

--=> U :=fun (2 : Z'b) =>F' ab z

Note that while the type Z[y] only depends on y, in the definition of Z' we must abstract both x

and y on account of the dependence of the type of y on x (in general, we abstract the full transitive
closure of domain dependencies when generating domain type abstractions).

Chapter 7

Results, Prospects and Conclusion

In this final chapter, we will give an overview of the current capabilities and limitations of our
translation, providing some preliminary data on its performance and success in translating formal
mathematics libraries and highlighting certain pain points and possible areas for improvements. We
will also describe some prospects for future work related to this research topic, from both a practical
and theoretical perspective.

7.1 Translation Results and Limitations

7.1.1 Lean4Less Translation: Results

From our preliminary experiments, our implementation of Lean4Less has proven to be a practical
translation that can be successfully applied at moderate scales. Our overall translation and ver-
ification workflow is visualized in [Figure 7.1] Starting from an E that we obtain from a set
of .olean files, combined with our preliminary translation constants that we obtain from the file
PatchTheorems.lean, we pass this as input to the Lean4Less translation, obtaining an output en-
vironment E¥’, which we can then export to be used by other systems (e.g. proof translation tools).
For verification, we typecheck ET using a modified fork of Lean4Lean representing a Lean™ kernel,
which is identical the Lean kernel but which is lacking the special checks for proof irrelevance and
K-like reduction in the isDefEq routine that decides definitional equality between terms.

We have tested the Lean translation on the Lean standard library and various lower-level Math-
lib modules, verifying our output in the manner described above, and have already had success
in translating significant subsets of Mathlib to Lean™, for instance Lean’s real numbers library
Mathlib.Data.Real.Basic, containing several thousands of lines of code and thousands of uses of
proof irrelevance and K-like reduction.

We benchmark our translation on Std, the Lean core standard libary, and on the mathlib li-
brary Mathlib.Algebra.Order.Field.Rat, with the versions of both libraries using Lean toolchain
v4.16.0-rc2. We report below on some measures relating to the translation of these modules on a
machine with an Intel Xeon 8-core CPU @ 2.20GHz and 32 GB RAM:

Constants Input/Output Input/Output
o q Transla- .
Module Total Using Environment tion Typechecking
Constants [PI]/[KLR] Size Runtime Runtime
(% of total) (Overhead) (Overheadﬂ
: 226MB/261MB 2m19s/3m9s
=4 [0}
Std 20859 1736/134 (6.3%) (15.5%) 18m02s (36.0%)
; 1485MB/1501MB 5m1ls/5mdds
5 v /
Algebra.Order.Field.Rat 113899 2965/237 (2.8%) (1.1%) 32m16s (10.6%)

151

152 CHAPTER 7. RESULTS, PROSPECTS AND CONCLUSION

PatchTheorems.lean

axiom prflrrel

->(Lean .Elab. runFrontend)

theorem appHEq
theorem lamHEq

input .olean files IH—>(Lean.readModuleData)

., =

[Lean4Lean _([P1], [KLR])

verification

Figure 7.1: Lean4Less translation and verification workflow.

The standard library translation overhead of 15.5% is not very excessive relative to the 6%
of total constants using proof irrelevance/K-like reduction, and we observe an even more modest
translation overhead when translating an actual Mathlib module. In both cases, however, this
is somewhat disproportionate to the amount of extra typechecking runtime overhead translation
incurs. It is not clear how much of this overhead is truly unavoidable, but more work can certainly
to be done to optimize the output size.

We can see above that translation takes significantly longer than typechecking, and we have
found that the translation tends to get “stuck” for significant amounts of time translating cer-
tain constants, sometimes taking longer than ten minutes to translate a single definition. Such
long-running translations also consume significant amounts of memory, which has proven to be a
prohibitive factor in attempting to translate larger mathlib libraries. Further investigation is needed
here. Such slowdowns may be related to general scaling problems that are closely tied to output
inefficiencies, and may be resolved through the implementation of further output optimizations —
for instance, the generation of auxiliary helper definitions and the more efficient use of caching.

7.1.2 Lean2dk: Preliminary Translation Results and Limitations

We have implemented our translation from Lean to Dedukti in a tool which we call “LeanQdk”E].
Lean2dk uses Lean4Less as an external dependency, which it executes as an initial translation step
to translate from Lean to Lean™ prior to the translation from Lean to Dedukti. The final translated
Dedukti environment is output in text format to a set of .dk files whose file structure mirrors that
of the input .olean iles.

Lean2dk implements the PTS-based translation described in and includes a set of
Dedukti files for both the PTS encoding E] and the universe level encodingﬂ, which are imported by
the output .dk files containing the translated Lean input modules. The translation is implemented
in Lean itself, giving us access to Lean’s standard library which provides many useful facilities for
working with Lean terms (like helper functions for recursing into binder expressions, instantiating

'When run with the Lean and Lean~ kernels, respectively (i.e. Lean4Lean with and without proof
irrelevance /K-like reduction).

Zhttps://github.com/Deducteam/lean2dk

3This translation implementation can mostly be found in the file Trans.lean.

4See the file enc.dk.

5See the files bool.dk, nat.dk, 1vl.dk, normalize.dk, and sublvl.dk, in the dk/enc directory.

https://github.com/Deducteam/lean2dk

7.1. TRANSLATION RESULTS AND LIMITATIONS 153

bound variables within terms, etc.). Additionally, the translation makes us of Lean’s “MetaM”
monad, which was designed for Lean’s metaprogramming framework. Relevant to us is MetaM’s
type inference function “ inferType”, which is used in our translation of Lean function type and

projection expressions (as was described in [Section 2.3| and [Section 2.3]).

Unfortunately, at the time of writing this thesis, we have not had time to thoroughly explore
and profile the efficacy of our translation; however, we have had some initial success in translating
lower-level modules of the standard library (like its classical logic library Init.Classical). The
translation unfortunately scales quite poorly to higher-level standard library modules, resulting in
translated output Dedukti files that are 2-3 orders of magnitude larger than the original input
Lean .olean iles. We suspect that this excessively large overhead is mostly attributable to the fact
that we output our translation in the form of a .dk text file, as opposed to the highly optimized
.0lean nput format, which, among other things, implements sharing between common expresion
subterms through object pointer sharing. This sharing is largely lost to our translation, where
identical subterms are simply repeated in the output. While it may be possible to “simulate” this
form of sharing to some extent by generalizing the auxiliary function closure generation used for
our translation of let bindings (as was described in , this possible approach has not
yvet been fully investigated.

7.1.3 Lean4Less Translation: Caveats and Limitations

While we have had considerable success in utilizing the Lean4Less translation to translate substantial
real-world mathematical libraries, there are a number of caveats and limitations to consider that
make the translation less practical than we might like. Below, we characterize a few known issues
with our translation that may be addressable to varying degrees.

Transport Hell

There are certain cases when terms representing expected types may themselves require translation,
which must then be reconciled with inferred types, leaving us in a situation of “transport hell”. This
arises in the following example:

inductive K : Prop where
| mk : K

def F : Bool =+ Type
| true => Bool
| _ => Unit

structure S : Type where
b : Bool
f:Fb

def projTest {B : Bool -+ Type} (s : B true)
: B (@K.rec (fun _ => 8) (8.mk true true) k).2 := s

For the annotated output type B (@K.rec ...).2 to be well-typed, the kernel must reduce the
K.rec application inside of the projection to $.mk true true in order to ensure that the projection
is of type Bool, which requires the use of K-like reduction. This means that the translation must
apply a cast around the entire projection to explicitly transport its type to Bool. Additionally,
the translation must cast the definition body s to match this translated annotated type signature,
which results in a large proof term as we must eliminate the cast placed around the projection in

154 CHAPTER 7. RESULTS, PROSPECTS AND CONCLUSION

addition to reducing the K.rec application. In this simple example, we can avoid such a translation
altogether by simply rewriting the output type annotation to B true, but in general this kind
of simplification may not be very obvious or practical (e.g. when the term is hidden behind a
constant /reduction sequence).

We broadly refer to this kind of situation as “transport hell”, in which an expected type contains
translated subterms that must be simplified in the course of generating an equality proof between
the expected and inferred types. Transport hell seems to be an inherent consequence of translation
that unfortunately cannot be avoided, though it may help somewhat to make use of a general lemma
for eliminating previously introduced casts:

def castRedHEq {A B : Sort u} (h : HEq A B) (a : A) : HEq (castHEq h a) a := ...

Then, in the modified function for computing weak-head normal forms, we can enable immedi-
ately “rewriting” any instances of castHEq h a to a, using castRedHEq in the returned equality
proof. Implementing this would save us from unnecessarily computing a proof corresponding to
the reduction of applications of castHEq every time that one is encountered by the modified whnf
function.

Scaling Difficulties

As mentioned above, our translation runs into difficulty at scale when attempting to translate larger
libraries from Mathlib, which is seemingly tied to excess memory usage. The first question we may
ask is whether these scaling difficulties are inherent to the kind of translation we are trying to
achieve, or if they can be perhaps addressed by aggressively optimizing the translation output. To
what extent might our existing optimizations have already helped with scaling, and how much more
can we do?

While many of the optimizations described above are useful in reducing the final output size,
it is less clear whether they are actually useful in easing the total memory burden of translation
and the typechecking of the translated output. In many cases, translation does not introduce
anything “new” into the output that wasn’t already encountered during normal typechecking. For
instance, the translation of the proof of the lemma prfIrrelExHeq from while quite
large relative to the original proof, does not actually introduce any additional expressions that
were not already encountered by the kernel during normal typecheckimgﬁ7 and so do not necessarily
add anything onto the total amount of memory/runtime needed to typecheck the translated term
relative to the original one. This may call into question all of our attempts to optimize the output
that we have described above. We may be saving somewhat on the total amount of disk space our
finally translated output requires, but do our optimizations really help us scale more effectively?

We believe that our optimizations are useful, even in terms of scaling, as we can in fact charac-
terize a situation in which we might end up with output terms that are much larger than anything
originally encountered by the kernel when typechecking the original input terms. This can arise in
particular on account of constant dependencies that may be expanded during typechecking.

For instance, suppose we have the definitions A and B, where B references A. Let A’ be the
translation of A to Lean™, and suppose it contains some large, unwieldy subterm t that takes a
particularly long time to typecheck. Suppose that B also contains another large subterm s. Now,
in the course of typechecking B, suppose that the definition of A is expanded, and becomes explicit
in the translation B’ (this may or may not happen, possibly depending on optimizations), which
then contains both ¢ and s. This situation is already not ideal — now, to typecheck B’, we have to
typecheck ¢ as well, which the original kernel did not necessarily need to do (A" may have just been

6That is, other than the uses of cast the proof irrelevance axiom, and some congruence lemmas, but these
scale proportionally to the size of the term being translated and do not make up crucial difference.

7.1. TRANSLATION RESULTS AND LIMITATIONS 155

expanded in the course of reduction, without requiring that ¢ in particular was typechecked at any
point).

However, things get even more problematic when we add yet another layer to this scenario.
Suppose we have another definition C, which references B, and in the course of typechecking C,
the definition of B is also expanded and becomes explicit in the translation C’. Suppose also that
the kernel did not happen to need to expand A after expanding B. Then, the translation C’ would
include s from B’ as well as t from A’, as an artefact of the fact that B needed to expand A in its
typing — this is despite the fact that originally, the kernel never even encountered t when typechecking
C. Now, typechecking C” incurs the cost of typechecking both t and s, whereas typechecking C' did
not require typechecking either of them.

We can see now that in general, as we translate larger libraries with deeper constant depen-
dencies, this effect can accumulate, which may result in scaling difficulties. In light of this, the
optimizations we have implemented so far may actually be important to some extent for scaling, as
they reduce the size of definitions that may be referenced by other definitions and accumulate up
the dependency hierarchy during the course of translation in the manner described above. However,
is there perhaps a way to fundamentally address this issue of transitive dependency expansion? A
concrete example of the problem, as well as a possible way to address it, are given in [Section 7.2.1]

GCD as a Primitive Operation

Lean implements a number of primitive arithmetical operations in its typechecking kernel for com-
mon natural number operations, e.g. addition, subtraction, multiplication, comparison, etc., by al-
lowing WHNF reduction to reduce such operations using an external arbitrary precision arithmetic
implementation, rather than using the kernel’s normal reduction routines. This is an important
optimization for allowing us to work with arbitrarily large natural numbers, which are relevant to
Lean’s code generation procedures (where we may want to represent, say, the largest 32 bit un-
signed integer). To ensure that it is sound to use these optimized operations, we must verify that
their corresponding Lean definitions satisfy the base definitional equalities that we would expect
of them. For example, we must have that x + 0 = x and x + (succ y) = succ (x + y) hold
definitionally in Lean.

If we want to take advantage of these optimizations in the Lean™ kernel as well, we must ensure
that these same definitional equalities hold just as well in Lean™. All of them in fact do, with the
exception of the Nat.gcd operation for computing the greatest common denominator between two

natural numbers. Here, the equality (ged (succ y) x) = (ged (mod x (succ y)) (succ y))
fails to hold definitionally in Lean™. This seems to be attributable to the fact that the implementa-
tion uses well-founded recursion, rather than structural recursion, invoking a use of K-like reduction
at some point during reduction. While it should be possible define the Nat.gcd via structural recur-
sion (as shown in |26]), enabling the equality to hold definitionally in Lean™, the current definition
of Nat.gcd is based on a more standard definition that uses well-founded recursion.

For this reason, we do not currently enable Nat.gcd as a primitive operation in the Lean™
kernel, as doing so may be unsound. As such, we also have to abort the translation of any constants
involving Nat.gcd computations on large numbers, as well as any of their dependent constants. If we
can patch/overhaul the definition of Nat.gcd so that its characteristic equations hold definitionally

in Lean™, we will be able to restore it as a primitive operation in the Lean™ kernel and re-enable
the translation of these constants.

156 CHAPTER 7. RESULTS, PROSPECTS AND CONCLUSION

7.2 Translation Prospects

7.2.1 Addressing Lean4Less Scaling Difficulties with Auxiliary Con-
stants

Let’s try to come up with a concrete example of how the translation scaling issue relating to
dependency expansion described above may arise, and how we might be able to possibly address it.
Consider the following definitions:

inductive E where
| a : E
| b : E

inductive T : Nat -+ Nat -+ Prop where
| mk : (n : Nat) = Tnn

#print T.rec
/_
T.rec.{u} : {n : Nat} -
{M : (m: Nat) - T nm= Sort u} =+
Mn (T.mk n) + {m : Nat} =+ (t : Tnm) =~
Mmt
-/

-- some wvery large, long-to-typecheck term
macro x : Nat := ...

abbrev C := funm=> (n : Nat) = Tn (n + m)

-- (must be marked as moncomputable because uses ‘T.rec”;
-- this is irrelevant to typechecking)

noncomputable def f (m : Nat) (¢ : Cm) : E =+ E

| .a => @T.rec x (fun _ _ => E) .a (x + m) (c x)

| .b=>.Db

where x is some large term that takes a long time to typecheck (note that it is a macro, not a
definition, so the elaborator directly inlines it wherever it appears). Now, suppose that we have the
following definition, which invokes WHNF computation and K-like reduction through f:

noncomputable def fp (¢ : C0) : £ 0 ¢ .a = .a := rfl

When reducing the LHS, we apply d-expansion and S-reduction expand to reduce £ 0 ¢ .a to the
application @T.rec x ... (¢ x), with the major premise not being a constructor application, thus
invoking K-like reduction. Because of this, while the definition of fp makes no reference itself to

X, its translation to Lean™ does:

noncomputable def fpTransl (¢ : C0) : £ 0 ¢ .a = .a :=
L4L.castHEq
(LAL.appArgHEqQ' (Eq (f 0 ¢ .a))
-- proof that "@T.rec = (fun _ _ => E) .a (z + 0) (c z) = .a°
--(t.e., fO0c .a=.a")
(L4L.appArgHEq' (@T.rec _ (fun _
rfl

=> E) .a _) (L4L.prfIrrelHEq (¢ x) (.mk x))))

7.2. TRANSLATION PROSPECTS 157

At first, this translation explicitly including x may not seem that problematic, since normally
typechecking £p would involve d-expanding £, so x would be pulled into memory anyways (even
though its actual value is not relevant to reduction here). But the key difference here is that in
the course of typechecking fp with the kernel, we do not actually need to do the expensive step of
typechecking x — it briefly appears and is compared syntactically with itself when deciding whether
to apply K-like reduction, but it is not actually typechecked at any point. On the other hand,
our translation explicitly includes x in the translated definition body of fp, and so it must be

typechecked when typechecking fpTransl. This is an instance of the general translation scaling
problem that we got at earlier — large terms can propagate to dependent constants in the process of
translation, become variously instantiated and accumulate, resulting in progressively larger output
terms as we translate constants that are higher up the import hierarchy.

Ideally, we would like to contain uses of x to a generalized “reduction proof fragment” that is
particular to the function f, and can be utilized by any translation that generates a proof involving
the reduction of an application of £. We can do the same for T.rec, generating the following
auxiliary lemmas:

theorem T.rec_aux {n : Nat}
{M: (m: Nat) = T nm = Sort u}
(mtv : Mn (T.mk n)) {m : Nat} (¢t : Tnm) (p_om : n == m)
(6T.rec n M mtv m t) == mtv
:= ... -- (generated proof using ‘p_nm’)

theorem f_aux (m : Nat) (¢ : Cm) (e : E)
(pom : m==0) (p.e : e==.a) : Tmce==.a:=
-- (proof using ‘p_m’, “p_e’, and T.rec_auzx)

With these in hand, we can achieve a more compact translation of fp that does not reference x:

noncomputable def fpTrans2 (¢ : C0) : £ 0 ¢ .a = .a :=
L4L.castHEq
(L4L.appArgHEqQ' (Eq (f 0 ¢ .a))
(f_aux 0 ¢ .a rfl rfl))
rfl

What’s more, any other definitional equality making use of a reduction involving f can also use the
lemma f_aux in producing a corresponding Lean™ equality proof, instantiated with the appropriate
arguments, eliminating redundant branches of proof in the translation output.

The type signatures of the auxiliary functions T.rec_aux and f_aux above mostly follow those
of the functions they are derived from, outputting instead an equality proof between the original
application and a particular reduced form, and additionally carrying the p_* “weakest precondition”
(WP) arguments, denoting the minimum criteria on the application arguments for the reduction
equality specified in the output type to holdﬂ

We can also consider an alternate formulation where these WPs are instead integrated directly
within the auxiliary definition’s type signature:

"This example has been simplified for presentation purposes, and does not capture the full range of
complexity in WP generation. In general, WPs represent requirements on the shape of the WHNF of their
left-hand side, which must have some inductive type, with the right-hand side being some (potentially
nested) constructor application. The RHS may introduce new variables representing (nested) constructor
arguments and the LHS may apply argument subexpressions to one another. We must also handle the case
of types dependent on arguments with WP conditions. See this file for a more comprehensive example:
https://github.com/Deducteam/Lean4less/blob/auxdefs-example/Leandless/Fixtures/AuxDefs.
lean

https://github.com/Deducteam/Lean4Less/blob/auxdefs-example/Lean4Less/Fixtures/AuxDefs.lean
https://github.com/Deducteam/Lean4Less/blob/auxdefs-example/Lean4Less/Fixtures/AuxDefs.lean

158 CHAPTER 7. RESULTS, PROSPECTS AND CONCLUSION

def T.rec_aux' {n : Nat}
{M: (m: Nat) = T nm - Sort u}
(mtv : Mn (T.mk n)) (¢t : Tnn):
@T.rec n M mtv n t == mtv

noncomputable def f_aux' (¢ : C0) : £ 0 c .a == .a := ...

noncomputable def fpTrams2' (¢ : CO0) : £ 0O c .a= .a :=
L4L.castHEq
(LAL.appArgHEq' (Eq (f 0 ¢ .a))
(f_aux' c))
rfl

This “baked-in” WP format has the benefit of smaller, easier-to-construct proofs from the auxiliary
lemmas which have smaller type signatures, which we can use in the (common) case when the WP
conditions are already satisfied definitionally.

Two key questions still remain: how do we compute the bodies of these functions, and how do
we compute their WP conditions? We suspect the best approach will be to compute them on an
“on-demand” basis, in parallel to WHNF computations. WP generation may be achieved by some
form of “tracing” on the arguments of §-expandable function heads, keeping track of how they are
reduced and eliminated upon through recursor reduction. The exact specifics of how this is to be
done, however, remain to be investigated further.

7.2.2 Implications of a Verified Translation for Lean’s Metatheory

Although Lean is technically not a conservative extension of Lean™, we can show an adjacent
property that is quite similar to conservativity, but which assumes the presence on prfIrrel in

the Lean™ typing context:

Theorem 7.2.1. For all terms T such that A - T : Sort ¢, if there is some term ¢ such that
AFt:T, then there is some term t' such that (prfIrrel , A)F ¢ :T.

Proof. By [Theorem 5.1.1) we have that (prfIrrel,A) = |T|~ : Sort £ and (prflrrel,A)

t|~ : |T|~. Additionally, since T is well-typed in Lean™ and T ~ |T'|~, we have by [Conjecture 5.1.2|
that there exists some term p such that (prfIrrel,A) F p : |T|~ == T. Therefore, we have

(prfIrrel , A)F cast ||~ T p |t|” : T. O

In light of this, we may wonder about the extent to which Lean™ can be used as a “proxy
metatheory” for Lean for the purpose of simplifying meta-theoretical analyses. A particularly in-
teresting meta-property we would like to verify is the consistency property, which can be stated as
follows:

Conjecture 7.2.1. There is no proof of the proposition False in a typing context consisting solely
of the axiom prfIrrel, i.e.:

—dp, prflrrel p: False

With the proposition False expressed in Lean as an inductive type with no constructors:

inductive False : Prop

7.2. TRANSLATION PROSPECTS 159

—3p, p: False

Figure 7.2: Translating entire libraries to be checked by a verified Lean™ kernel.

In fact, such a proof cannot be formally verified in Lean itself due to Gédel’s Incompleteness Theorem
[21], which identifies a class of meta-properties (including consistency) which are not provable in
any sufficiently expressive system. Rather, it would have to either be shown informally or in a
different (more expressive) type system. Carneiro’s LeandLean project [12] contains some meta-
theoretical formalizations towards a proof of consistency of Lean’s type theory, but efforts in this
direction face significant difficulties that are particularly attributable to features such as definitional
proof irrelevance and K-like reduction, as well as the more recent features of struct-n and struct-like
reduction (whose elimination should also be under the scope of the Lean4Less translation). So,
certain important meta-properties of Lean may be significantly easier to show in the smaller theory
of Lean™ where these problematic features have been removed. Additionally, previous examples of
non-termination and undecidability of typechecking shown by Carneiro [12, |13] depend on the use
of definitional proof irrelevance and K-like-reduction. These features do not exist in Lean™, so it is
an open question whether or not the same issues affect the smaller theory of Lean™. We conjecture
that both decidability of typechecking and termination may in fact hold — if still not entirely, then
perhaps at least with much weaker assumptions — without K- and struct-like reduction.

Assuming we are able to show that Lean™ is consistent, Lean™ then becomes an ideal target
for us to translate Lean formalizations to, in order to typecheck terms with this smaller, provably
safe kernel. In this respect, it will also be interesting to formally prove that the Lean™ kernel
implementation is correct according to the Lean™ type theory. To have this extra degree of assurance
for large-scale formalizations such as Mathlib, it may at first seem necessary to hyper-optimize the
LeandLess translation so that it can effectively scale up to Mathlib-size formal libraries. This
hypothetical process is visualized in [Figure 7.2] As mentioned earlier, however, it is not certain
that such scaling is even theoretically possible to begin with, as some scaling issues may be more
or less inherent to the translation. However, if our only objective is to improve the confidence that
we have in mathematics that has been formalized in Lean, we likely do not need to actually go this
far, particularly if we are able to formally prove the correctness of our translation and the Lean
kernel itself w.r.t. the Lean and Lean™ metatheories. If we can show we would
know that any axiom-free proof of the proposition False in Lean would translate into a proof of
False in Lean™, and so, proving the consistency of Lean™ — assuming that the axiom prfIrrel is
in the typing context, as stated in [Conjecture 7.2.1|— would imply the consistency of Lean, as being
able to prove False in Lean would imply that such a proof can then be translated to Lean™, which
is in contradiction with [Conjecture 7.2.1] In combination with a proof of correctness of the Lean
kernel w.r.t. the Lean metatheory, this would imply the consistency of the Lean kernel. Proving

160 CHAPTER 7. RESULTS, PROSPECTS AND CONCLUSION

D LAL
1

Lean4Less.correct|

m——

—————
~3p, p: False

Lean .Meta Lean™ .Meta

)

Lean.correct

Figure 7.3: Verifying the correctness and consistency of the Lean kernel.

formally in Lean could be done constructively via a proof of correctness of the
translation implemented by Lean4Less. If we can formally show that Lean4Less’s implementation
ensures the property that on all well-typed, terminating Lean input environments, the translation
terminates and produces well-typed, semantically equivalent Lean™ output environments, we could
then formally prove the equivalent of [Theorem 5.1.1] [Conjecture 5.1.2] and finally in
Lean.

Doing this kind of formalization would effectively justify the continued use of the Lean kernel,
allowing us to be almost just as confident in using the original Lean kernel to typecheck large
formalizations as we would be if we were to translate the entire libraries to be typechecked with the
Lean™ kernel. This strategy is visualized in

Attempting a proof of translation correctness could also be quite interesting in relation to
identifying potential consistency bugs in Lean’s kernel implementation. The ability to eliminate
a certain definitional equality from Lean testifies to the fact that its inclusion as a convenience
for formalization does not expand the class of provable propositions in any meaningful way, so in
particular there is no possibility of it introducing consistency issues. If we encounter any significant
difficulties in trying to construct this proof, it may in fact be the case that [Conjecture 7.2.1| is
not provable w.r.t. the type theory that is actually implemented by the Lean kernel, pointing to
a possible issue in the kernel implementation of one of the eliminated definitional equalities that
renders Lean inconsistent.

However, this approach carries a couple caveats (as indicated by the asterisks in the.
Firstly, it requires some additional trust in the stack of tooling used to compile the kernel program-
down into machine-executable bytecode. Without the use of a formally verified compilation stack,
we cannot be entirely sure that the operational semantics of the Lean kernel, which was originally
expressed and proven correct as a Lean program, have been preserved through its conversion first
to Lean’s IR, then C code, and then to executable bytecode.

Secondly, this approach is somewhat unsatisfactory, because part of the proof of the Lean
kernel’s consistency (that is, the proofs of correctness of the translation and the Lean kernel) would
be checked by the same kernel, rather than the Lean™ kernel, whose underlying theory we have
directly shown consistency for. However, there is a way for us to address this issue. If we could
formally show the correctness of the Lean™ kernel as well, we could use Lean4Less to translate this
proof, as well as the other two program proofs, to be checked by the verified Lean™ kernel. This
can be visualized as follows:

With this approach, we would still want our translation to be practical to some extent, but only
insofar as it is capable of translating these select few proofs to Lean™.
Additionally, in the opposite direction, we can think about extending Lean’s type theory and

7.2. TRANSLATION PROSPECTS 161

Lean.correct™

Leand4lLess.correct™

Lean™ .correct

Lean4lLess.correct |
Lean.Meta Lean™ .Meta == "
[] e
[‘ean—ﬂ —3p, p:False
Lean ™. correct | 1

Figure 7.4: Verifying the correctness and consistency of the Lean kernel against the Lean™
kernel.

typechecker kernel in certain conservative ways to obtain some hypothetical theory Lean™, and
proving the correctness of a translation from Lean™ to Lean. Such a translation could then be
composed with the translation from Lean to Lean™ for a provably correct translation from Lean™
to Lean™, with this proof also translated to Lean™ via the translation from Lean™ to Leanﬁ, giving
us the confidence to reason henceforth in this more powerful theory (again, at the cost of some extra
trust in the stack of tooling that generates the machine code from the formal representation of the
implementation of the Lean™ kernel in Lean).

Along these lines, we can also consider formally verifying a translation from Lean™ to Dedukti,
using Dedukti instead as the base theory for reasoning about consistency results. Because Dedukti’s
type theory is even more minimal than Lean™’s, showing the consistency of our Lean encoding in
Dedukti may be simpler than reasoning about Lean™ itself, with Lean’s special reduction rules
(e.g. those for recursor reduction) becoming explicit Dedukti rewrite rules. Additionally, existing
tooling that has been developed for Dedukti, such as confluence checkers, may be helpful in showing
consistency results.

7.2.3 Extensionality in Lean

Given that LeandLess’s implementation is motivated by a general E'TT-to-ITT translation, an
interesting prospect is the possibility of adapting it for the purpose of translating Lean terms from
some more powerful theory that has been extended with additional definitional equalities back to
the original theory. Indeed, as Lean4Less is implemented in Lean, it could be modified to make it
capable of eliminating general, user-defined equalities beyond those already defined in Lean. That
is, it could accept input terms from some hypothetical user-defined extensional theory “Leang+”,
which is Lean extended with some kind of limited equality reflection rule:

AE.A:Sort £ AF.tu:A compeq(A, At u)

[RFL]
AFE.t=u

where the compeq(T', A, t,u) criteria states that, in context I', ¢ == w is provable automatically in
Lean, due to it having been registered directly by a user, or being derivable from other registered
equalities. The Lean kernel itself could then be extended to accept user-defined extensional equali-
ties, with the assurance that it will be possible to translate it back to Lean’s theory via the modified

8 Alternatively, if this proof is first expressed in Lean™ itself, it can be translated to Lean™ via a composite
translation first from Lean™ to Lean, then from Lean to Lean ™.

162 CHAPTER 7. RESULTS, PROSPECTS AND CONCLUSION

Lean4Less translation. On the other hand, if we wish to continue using the current Lean kernel,
another option is to integrate Lean4Less with existing elaboration routines to allow for a real-time
translation that would simulate native kernel support for extensional reasoning.

Regarding the user input of extensional equalities, it will be important to distinguish between
“directed” and “undirected” equalities. Undirected equalities are analogous to proof irrelevance, unit-
n and function-n in Lean, (and are implemented in the Lean4Lean typechecker kernel’s isDefEqCore

function). Suppose we have a hypothetical constant annotation @[deq] thats marks an equality
theorem as an extensional definitional equality that is “known” to the kernel. This would allow us
to prove the following theorem by reflection:

@[deq]
theorem addComm (x y : Nat) : x + ¥y
example (x y z : Nat) : x + (y + z)

y+x o= ...
x+ (z+y) :=rfl

Here, Lean checks the definitional equality of the arguments in turn, invoking [RFL*| via addComm
on the second argument of the outermost addition. However, an undirected definitional equality
would not allow us to prove:

-- (Lean's addition function matches on the second argument,
-- so this does not hold definitionally)

@[deq]

theorem incEq (x : Nat) : 1 + x = Nat.succ x := ...

-- cannot be proven with ‘rfl’

example (x y : Nat) : y + (1 + a) = Nat.succ (y + a) := sorry

The problem is the following: for the outermost application to reduce, the second argument’s weak-
head normal form must be an application of Nat.succ, which is not the case for 1 + a. While
1 + a isdefinitionally equal to Nat.succ a by incEq, this equality does not apply when computing
its weak-head normal form.

For this, we instead require a “directed equality” (a.k.a. “rewrite rule”) that can be applied
during reduction, allowing us to “rewrite” the addition to a constructor application. Let us use the
hypothetical annotation @[drw] to register a directed extensional equality theorem, enabling here
a proof by rfl:

Q[drw]
theorem incEq (x : Nat) : 1 + x = Nat.succ x := ...
example (x y : Nat) : y + (1 + a) = Nat.succ (y + a) := rfl

Directed equalities may seem to be strictly more powerful than undirected ones, but they are only
practically applicable as long as they satisfy the properties of termination and confluence, which
are well-studied in other systems such as Dedukti [10] where rewrite rules are built-in. Without a
terminating set of rewrite rules, typechecking/elaboration will also not terminate (for instance, it
would not be acceptable to register the commutativity of addition as a directed equality). Confluence
is an important property in ensuring that the user-provided reduction rules are unambiguous — in
particular, it ensures that definitional equality checking via comparison of normal forms effectively
decides the equational theory that they deﬁneﬂ Termination and confluence must also be considered
in light of the reduction rules that Lean natively implements, namely those of recursor, K-like,
struct-like and quotient reduction.

9The equational theory defined by a rewrite system is the reflexive, transitive, symmetric closure of the
relation between terms defined by the individual rewrite rules.

7.2. TRANSLATION PROSPECTS 163

Regarding Lean’s cc/grind Tactic

Some of the functionality suggested above for allowing Lean to decide a larger class of definitional
equalities may be reminiscent of automation already present in Lean for congruence closure [34],
which was first introduced in Lean 3’s cc tactic, and more recently superseded by Lean 4’s grind
tactic. Lean’s congruence closure procedure uses a powerful algorithm widely used by SMT solvers
that attempts to find an equality proof between two specified terms, taking local equality assump-
tions into consideration. The fact that automation already exists for this purpose may bring up
some questions regarding what potential “benefits” an approach for equality proof reconstruction
based on an extensional-to-intensional translation may have over existing, more well-established
approaches such as congruence closure.

For instance, one could imagine translating from an “extensional” version of Lean in which
the elaborator automatically calls a congruence closure algorithm whenever a typing discrepancy
is encountered, and, if the algorithm returns a proof, uses the returned proof to “patch up” the
discrepancy via a type cast (as is already implemented in Lean4Less) to help build a finally elab-
orated term. Such an approach could work in principle, however from a practical perspective it is
hardly reasonable. An implicit trade-off that many proof assistant kernels have to make is between
providing convenient automation that allows the kernel to identify as many equal terms as possible
(avoiding the need for users to manually provide equality proofs), and providing timely negative
feedback in the event of a typing error. From a user perspective, it would be unacceptable to call
the equivalent of Lean’s grind tactic to try to resolve every single instance of a typing discrepancy
that is encountered. These tactics are much better suited for when the user already heavily suspects
that equality can be proven beforehand.

The approach we suggest is rather to extend the existing kernel isDefEq routine in simple,
limited, and efficient ways, allowing it to identify a larger class of provably equal terms while
minimally sacrificing the responsiveness of the system in the event of ill-typedness. The proof
reconstruction algorithm we could implement for translating from this extensional version of Lean
could then simply extend on the implementation we already have for Lean4Less’s isDefEq function.
While this may not cover as much as an approach based on a full-blown congruence closure algorithm
in terms of enabling more definitional equalities, it could be a very reasonable compromise allowing
for some level of user-specified definitional equalities while still providing timely negative feedback
to the user.

Conclusion

In this thesis, we have described several aspects of the theory, design, and implementation behind
a tool for translating proofs from the Lean proof assistant to the Dedukti logical framework, for
the ultimate purpose of exporting proofs from Lean to other proof assistants. Guided by certain
theoretical correctness requirements, we have derived a base encoding of Lean in the MI/R type
theory of Dedukti, along with a two-step translation consisting of an initial translation from Lean
to a smaller theory Lean™, followed by a translation from Lean™ to Dedukti.

Designing this translation required special attention to the specifics of Lean’s type theory, in
particular its use of specialized definitional equalities such as proof irrelevance and K-like reduction.
Lean’s use of universe polymorphism and impredicativity also required us to derive an encoding
of universe level terms in Dedukti that allowed for Dedukti to decide equivalence of the translated
universe level terms through the computation of normal forms. The translation from Lean™ to
Dedukti is based directly on previous work defining a generic translation from a class of “pure
type systems” to Dedukti, with some extensions to the translation to account for Lean’s particular
definitional equality rules. The preliminary translation step from Lean to Lean™ was adapted from
previous work on the translation from extensional and intensional type theory, and implemented in
the tool “LeandLess”, which itself is based on a typechecker kernel implementation for Lean. We

164 CHAPTER 7. RESULTS, PROSPECTS AND CONCLUSION

also describe a number of output optimizations that we have implemented for Lean4Less to help
make the translation somewhat practical.

While a great deal of work remains to be done to make the translation as a whole capable of
scaling to large input libraries, we have already had some notable success in translating moder-
ately sized Lean libraries to Lean™ and Dedukti. We have also described some possible avenues to
congsider to help make the translation more practical, as well as some interesting possible implica-
tions our translation could have for certain meta-theoretical analyses. Overall, we believe that the
work described in this thesis lays the foundation for the export of Lean to other proof assistants
through the intermediate Dedukti logical framework, eventually enabling improved interoperability
and making Lean formalizations accessible to a wider array of formal systems.

Bibliography

1]

2]

3]

4]

[5]
[6]
7]

18]

19]

[10]

Andreas Abel and Thierry Coquand. “Failure of Normalization in Impredicative Type
Theory with Proof-Irrelevant Propositional Equality”. In: Logical Methods in Computer
Science Volume 16, Issue 2, 14 (June 2020). 1sSN: 1860-5974. DOL: 10.23638/LMCS-
16(2:14)2020.

Stuart Allen et al. “The Nuprl Open Logical Environment”. In: Dec. 2006, pp. 170-176.
ISBN: 978-3-540-67664-5. DOI: [10.1007/10721959_12.

Andrea Asperti et al. “The Matita interactive theorem prover”. In: Proceedings of the
23rd International Conference on Automated Deduction. CADE’11. Wroc a w, Poland:
Springer-Verlag, 2011, pp. 64-69. 1SBN: 9783642224379.

Ali Assaf. “A calculus of constructions with explicit subtyping”. In: LIPICS. Ed. by
Hugo Herbelin, Pierre Letouzey, and Matthieu Sozeau. Vol. 39. LIPICS. Institut Henri
Poincaré, Paris, France, May 2014. URL: https://hal.science/hal-01097401.

Ali Assaf. “A framework for defining computational higher-order logics”. Theses. Ecole
polytechnique, Sept. 2015. URL: https://pastel.hal.science/tel-01235303.

Henk Barendregt, Wil Dekkers, and Richard Statman. Lambda Calculus with Types.
Perspectives in Logic. Cambridge University Press, 2013.

Andrej Bauer et al. “Design and Implementation of the Andromeda Proof Assistant”.
In: 22nd International Conference on Types for Proofs and Programs (TYPES 2016).
Ed. by Silvia Ghilezan, Herman Geuvers, and Jelena Ivetic. Vol. 97. Leibniz Inter-
national Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl
— Leibniz-Zentrum fiir Informatik, 2018, 5:1-5:31. ISBN: 978-3-95977-065-1. DOI: [10.
4230/LIPIcs.TYPES.2016.5.

Frédéric Blanqui. “Encoding Type Universes Without Using Matching Modulo Asso-
ciativity and Commutativity”. In: 7th International Conference on Formal Structures
for Computation and Deduction (FSCD 2022). Vol. 228. Tth International Conference
on Formal Structures for Computation and Deduction (FSCD 2022). Haifa, Israel,
Aug. 2022, p. 14. DOI: |10.4230/LIPIcs.FSCD.2022.24. URL: https://inria.hal.
science/hal-03708036.

Frédéric Blanqui. Type theory and rewriting. 2001. URL: https://inria.hal.science/
1nri1a-00105525.

Frédéric Blanqui et al. “A modular construction of type theories”. In: Logical Methods
in Computer Science Volume 19, Issue 1, 12 (Feb. 2023). 1sSN: 1860-5974. DOI: 10 .
46298/1mcs-19(1:12)2023.

165

https://doi.org/10.23638/LMCS-16(2:14)2020
https://doi.org/10.23638/LMCS-16(2:14)2020
https://doi.org/10.1007/10721959_12
https://hal.science/hal-01097401
https://pastel.hal.science/tel-01235303
https://doi.org/10.4230/LIPIcs.TYPES.2016.5
https://doi.org/10.4230/LIPIcs.TYPES.2016.5
https://doi.org/10.4230/LIPIcs.FSCD.2022.24
https://inria.hal.science/hal-03708036
https://inria.hal.science/hal-03708036
https://inria.hal.science/inria-00105525
https://inria.hal.science/inria-00105525
https://doi.org/10.46298/lmcs-19(1:12)2023
https://doi.org/10.46298/lmcs-19(1:12)2023

166

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]

[22]

BIBLIOGRAPHY

Ana Bove, Peter Dybjer, and Ulf Norell. “A Brief Overview of Agda — A Functional
Language with Dependent Types”. In: Proceedings of the 22nd International Confer-
ence on Theorem Proving in Higher Order Logics. TPHOLs ’09. Munich, Germany:
Springer-Verlag, 2009, pp. 73—78. 1SBN: 9783642033582. DOI: 10.1007/978-3-642-
03359-9_6 URL: https://doi.org/10.1007/978-3-642-03359-9_6

Mario Carneiro. Lean4Lean: Towards a formalized metatheory for the Lean theorem
prover. 2024. arXiv: 2403 . 14064 [cs.PL]. URL: https://arxiv.org/abs/2403.
14064. Github repository: https://github.com/digama0/lean4lean.

Mario Carneiro. “The Type Theory of Lean”. MA thesis. 2019. URL: https://github.
com/digama0/lean-type-theory/releases/tag/v1.0.

Thierry Coquand and Gérard Huet. “The calculus of constructions”. In: Information
and Computation 76.2 (1988), pp. 95-120. 1SSN: 0890-5401. DOI: https://doi.org/
10 . 1016 /0890 - 5401(88) 90005 - 3. URL: https : / /www . sciencedirect . com/
science/article/pii/0890540188900053.

Thiago Felicissimo. “Adequate and Computational Encodings in the Logical Frame-
work Dedukti”. In: 7th International Conference on Formal Structures for Computa-
tion and Deduction (FSCD 2022). Ed. by Amy P. Felty. Vol. 228. Leibniz International
Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl — Leibniz-
Zentrum fiir Informatik, 2022, 25:1-25:18. 1SBN: 978-3-95977-233-4. DOI: [10 . 4230/
LIPIcs.FSCD.2022.25. URL: https://drops.dagstuhl .de/entities/document/
10.4230/LIPIcs.FSCD.2022.25.

Thiago Felicissimo, Frédéric Blanqui, and Ashish Kumar Barnawal. “Translating proofs
from an impredicative type system to a predicative one”. In: 81st FACSL Annual
Conference on Computer Science Logic (CSL 2023). Warsaw, Poland, 2023. DOI: |10.
4230/LIPIcs.CSL.2023.19. URL: https://inria.hal.science/hal-03848584.

Gaspard Ferey. “Higher-Order Confluence and Universe Embedding in the Logical
Framework”. Theses. Université Paris-Saclay, June 2021. URL: https://theses.hal.
science/tel-03418761.

Guillaume Genestier. “Encoding Agda Programs Using Rewriting”. In: FSCD - 5th
International Conference on Formal Structures for Computation and Deduction. Paris,
France, June 2020. DOI: |10.4230/LIPIcs.FSCD.2020.31. URL: https://inria.hal.
science/hal-03838613.

Yoan Géran. “Encoding impredicative hierarchy of type universes with variables”. work-
ing paper or preprint. Nov. 2023. URL: https://hal.science/hal-04311936.

J.Y. Girard. Interprétation fonctionnelle et élimination des coupures de l’arithmétique
d’ordre supérieur. Editeur inconnu, 1972. URL: https://books.google.fr/books?
1d=IRcVHAAACAAJ.

Kurt Gédel. “Uber formal unentscheidbare Sitze der Principia Mathematica und ver-
wandter Systeme I”. German. In: Monatshefte fiir Mathematik und Physik 38 (1931),
pp- 173-198.

Martin Hofmann. “Conservativity of Equality Reflection over Intensional Type The-
ory”. In: Selected Papers from the International Workshop on Types for Proofs and
Programs. TYPES ’95. Berlin, Heidelberg: Springer-Verlag, 1995, pp. 153-164. I1SBN:
3540617809.

https://doi.org/10.1007/978-3-642-03359-9_6
https://doi.org/10.1007/978-3-642-03359-9_6
https://doi.org/10.1007/978-3-642-03359-9_6
https://arxiv.org/abs/2403.14064
https://arxiv.org/abs/2403.14064
https://arxiv.org/abs/2403.14064
https://github.com/digama0/lean4lean
https://github.com/digama0/lean-type-theory/releases/tag/v1.0
https://github.com/digama0/lean-type-theory/releases/tag/v1.0
https://doi.org/https://doi.org/10.1016/0890-5401(88)90005-3
https://doi.org/https://doi.org/10.1016/0890-5401(88)90005-3
https://www.sciencedirect.com/science/article/pii/0890540188900053
https://www.sciencedirect.com/science/article/pii/0890540188900053
https://doi.org/10.4230/LIPIcs.FSCD.2022.25
https://doi.org/10.4230/LIPIcs.FSCD.2022.25
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2022.25
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2022.25
https://doi.org/10.4230/LIPIcs.CSL.2023.19
https://doi.org/10.4230/LIPIcs.CSL.2023.19
https://inria.hal.science/hal-03848584
https://theses.hal.science/tel-03418761
https://theses.hal.science/tel-03418761
https://doi.org/10.4230/LIPIcs.FSCD.2020.31
https://inria.hal.science/hal-03838613
https://inria.hal.science/hal-03838613
https://hal.science/hal-04311936
https://books.google.fr/books?id=IRcVHAAACAAJ
https://books.google.fr/books?id=IRcVHAAACAAJ

23]
[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]
[32]

33]

[34]

[35]

[36]

[37]

BIBLIOGRAPHY 167

Martin Hofmann and C. J. Rijsbergen. Extensional Constructs in Intensional Type
Theory. Berlin, Heidelberg: Springer-Verlag, 1997. 1SBN: 3540761217.

William A. Howard. “The formulae-as-types notion of construction”. In: 1969. URL:
https://api.semanticscholar.org/CorpusID:118720122.

Joe Hurd. “The OpenTheory Standard Theory Library”. In: NASA Formal Methods.
Ed. by Mihaela Bobaru et al. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011,
pp. 177-191. 1SBN: 978-3-642-20398-5.

Xavier Leroy. “Well-founded recursion done right”. In: CogPL 2024: The Tenth Interna-
tional Workshop on Coq for Programming Languages. ACM. London, United Kingdom,
Jan. 2024. URL: https://inria.hal.science/hal-04356563.

Leonardo de Moura and Sebastian Ullrich. “The Lean 4 Theorem Prover and Program-
ming Language”. In: Automated Deduction — CADE 28: 28th International Conference
on Automated Deduction, Virtual Fvent, July 12—15, 2021, Proceedings. Berlin, Heidel-
berg: Springer-Verlag, 2021, pp. 625-635. 1ISBN: 978-3-030-79875-8. DOI: 110.1007/978-
3-030-79876-5_37.

Tobias Nipkow, Lawrence Paulson, and Markus Wenzel. Isabelle/HOL — A Proof
Assistant for Higher-Order Logic. Jan. 2002. 1SBN: 9783540433767. DOI: 10.1007/3-
540-45949-9.

Nicolas Oury. “Extensionality in the calculus of constructions”. In: Proceedings of the
18th International Conference on Theorem Proving in Higher Order Logics. TPHOLSs’05.
Oxford, UK: Springer-Verlag, 2005, pp. 278-293. 1SBN: 3540283722. DOT: 10 .1007/
11541868_18.

Christine Paulin-Mohring. “Introduction to the Calculus of Inductive Constructions”.
In: All about Proofs, Proofs for All. Ed. by Bruno Woltzenlogel Paleo and David De-
lahaye. Vol. 55. Studies in Logic (Mathematical logic and foundations). College Pub-
lications, Jan. 2015. URL: https://inria.hal.science/hal-01094195.

Rocq Community. The Rocq Theorem Prover. URL: https://rocq-prover.org/.

B. Russell. “Les Paradoxes de la Logique”. In: Revue de Métaphysique et de Morale
14.5 (1906), pp. 627-650.

Ronan Saillard. “Typechecking in the lambda-Pi-Calculus Modulo : Theory and Prac-
tice”. Theses. Ecole Nationale Supérieure des Mines de Paris, Sept. 2015. URL: https:
//pastel.hal.science/tel-01299180.

Daniel Selsam and Leonardo de Moura. “Congruence Closure in Intensional Type The-
ory”. In: CoRR abs/1701.04391 (2017). arXiv: 1701.04391.

Matthieu Sozeau et al. “Coq Coq correct! verification of type checking and erasure for
Coq, in Coq”. In: Proc. ACM Program. Lang. 4.POPL (Dec. 2019). por: 10.1145/
3371076.

SRI International Computer Science Laboratory. Prototype Verification System (PVS).
https://pvs.csl.sri.com/. Accessed: 2026-01-12. 2026.

Nikhil Swamy et al. “Dependent types and multi-monadic effects in F*”. In: SIGPLAN
Not. 51.1 (Jan. 2016), pp. 256-270. 1SSN: 0362-1340. DOI: [10.1145/2914770 . 2837655!

https://api.semanticscholar.org/CorpusID:118720122
https://inria.hal.science/hal-04356563
https://doi.org/10.1007/978-3-030-79876-5_37
https://doi.org/10.1007/978-3-030-79876-5_37
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/11541868_18
https://doi.org/10.1007/11541868_18
https://inria.hal.science/hal-01094195
https://rocq-prover.org/
https://pastel.hal.science/tel-01299180
https://pastel.hal.science/tel-01299180
https://arxiv.org/abs/1701.04391
https://doi.org/10.1145/3371076
https://doi.org/10.1145/3371076
https://pvs.csl.sri.com/
https://doi.org/10.1145/2914770.2837655

[38]

[39]

[40]

[41]

[42]

[43]

[44]

The mathlib community. “The lean mathematical library”. In: Proceedings of the 9th
ACM SIGPLAN International Conference on Certified Programs and Proofs. CPP
2020. New Orleans, LA, USA: Association for Computing Machinery, 2020, pp. 367—
381. 1SBN: 9781450370974. DOI: 10.1145/3372885.3373824. URL: https://doi.org/
10.1145/3372885.3373824.

Francois Thiré. “Interoperability between proof systems using the logical framework
Dedukti”. Theses. Université Paris-Saclay, Dec. 2020. URL: https://hal.science/
tel-03224039.

Frangois Thiré. “Sharing a Library between Proof Assistants: Reaching out to the HOL
Family”. In: Electronic Proceedings in Theoretical Computer Science 274 (July 2018),
pp. 57-71. 18SN: 2075-2180. DOI: [10.4204/eptcs.274.5. URL: http://dx.doi.org/
10.4204/EPTCS.274.5.

Thomas Traversié. “Proofs for Free in the AII-Calculus Modulo Theory”. In: Electronic
Proceedings in Theoretical Computer Science 404 (July 2024), pp. 49-63. 1SSN: 2075-
2180. DOI: 10.4204/eptcs.404.4. URL: http://dx.doi.org/10.4204/EPTCS.404.4.

Andrzej Trybulec and Howard Blair. “Computer assisted reasoning with MIZAR?”. In:
Proceedings of the 9th International Joint Conference on Artificial Intelligence - Vol-
ume 1. IJCAT'85. Los Angeles, California: Morgan Kaufmann Publishers Inc., 1985,
pp- 26-28. 1SBN: 0934613028.

Théo Winterhalter, Matthieu Sozeau, and Nicolas Tabareau. “Eliminating reflection
from type theory”. In: Proceedings of the 8th ACM SIGPLAN International Conference
on Certified Programs and Proofs (2019). URL: https://api.semanticscholar.org/
CorpusID:5737975b.

Théo Winterhalter and Nicolas Tabareau. ett-to-itt (Github). URL: %7Bhttps : //
github.com/TheoWinterhalter/ett-to-itt%7D.

https://doi.org/10.1145/3372885.3373824
https://doi.org/10.1145/3372885.3373824
https://doi.org/10.1145/3372885.3373824
https://hal.science/tel-03224039
https://hal.science/tel-03224039
https://doi.org/10.4204/eptcs.274.5
http://dx.doi.org/10.4204/EPTCS.274.5
http://dx.doi.org/10.4204/EPTCS.274.5
https://doi.org/10.4204/eptcs.404.4
http://dx.doi.org/10.4204/EPTCS.404.4
https://api.semanticscholar.org/CorpusID:57379755
https://api.semanticscholar.org/CorpusID:57379755
%7Bhttps://github.com/TheoWinterhalter/ett-to-itt%7D
%7Bhttps://github.com/TheoWinterhalter/ett-to-itt%7D

BIBLIOGRAPHY

169

Titre: Traduction de Preuves de Lean vers Dedukti

Mots clés: lambda-pi calcul modulo réécriture, interopérabilité des systémes de preuve, la théorie des

types

Résumé: Les assistants de preuve sont des logi-
ciels qui permettent |'expression précise d’objets,
de propriétés et de preuves mathématiques, et véri-
fient la validité des preuves.

Au cours des derniéres décennies, plusieurs
assistants de preuve ont été développés, chacun
disposant de sa propre communauté et de ses
bibliothéques. Malheureusement, le partage des
résultats entre différents assistants s’avére sou-
vent complexe car leur syntaxe et leurs théories
sous-jacentes different de maniére significative.
Ceci peut entrainer une duplication du travail, les
mémes théories mathématiques étant formalisées
indépendamment dans différents systémes. |déale-
ment, nous souhaiterions disposer d'outils permet-
tant la traduction des preuves entre différents sys-
témes.

Cette thése décrit la traduction des preuves de
I'assistant de preuve Lean vers le cadre logique
Dedukti. Lean est un assistant de preuve qui a
gagné en popularité auprés des mathématiciens ces
derniéres années grice a sa bibliothéque «math-
lib» contenant un vaste corpus de formalisations
mathématiques en constante expansion. La théorie
des types de Lean repose sur le calcul des con-
structions avec types inductifs, s'inspirant forte-
ment de I'assistant de preuve Rocq. Dedukti est un
cadre logique concu pour faciliter I'exportation de
preuves entre différents systémes, avec une théorie
des types basée sur le lambda-pi-calcul modulo
réécriture.

Notre traduction s'appuie sur un encodage
générique des «systémes de types pursy» en De-
dukti. A partir de cet encodage de base, nous
définissons une traduction des termes de Lean vers
les termes de Dedukti, en tenant compte égale-
ment de certaines spécificités du typage de Lean,
notamment I'utilisation de certaines «égalités de
définition» pour accroitre sa puissance expressive
en élargissant la classe des types que le noyau

peut considérer comme équivalents. La gestion
de ces égalités définitionnelles consiste générale-
ment & ajouter des régles de réécriture. Nous
ajoutons également des composants a notre en-
codage permettant & Dedukti de déterminer effi-
cacement |'équivalence des expressions d'univers,
compte tenu de la prise en charge par Lean du
polymorphisme d’'univers et de son univers propo-
sitionnel imprédicatif.

La traduction directe que nous définissons de
Lean vers Dedukti ne prend cependant en compte
qu’un sous-ensemble particulier des égalités défini-
tionnelles de Lean. Certaines égalités spécifiques a
Lean, notamment celles d’irrelevance des preuve,
d’'éta pour les types unités et de «réduction de
type K», ne se prétent malheureusement pas a
un encodage direct via des régles de réécriture.
Pour les gérer, nous intégrons une «étape de pré-
traduction» a notre pipeline, traduisant d'abord les
termes Lean vers une théorie plus petite, «Lean™
», qui ne présente pas ces identités probléma-
tiques. Notre approche s'inspire d'une traduc-
tion générique de la théorie des types extension-
nelle vers la théorie des types intensionnelle, que
nous adaptons pour traduire de Lean vers Lean™
en modifiant un noyau Lean afin d’effectuer la tra-
duction en paralléle de la vérification de types clas-
sique.

La traduction que nous avons implémentée a
donné des résultats préliminaires prometteurs, mal-
gré la persistance de certains défis, notamment
concernant son passage a |'échelle pour fonction-
ner avec des bibliothéques plus volumineuses. Les
techniques de traduction décrites dans cette thése
suggeérent également des pistes de recherche in-
téressantes, avec des implications potentielles pour
les développements futurs de Lean, notamment en
ce qui concerne les extensions de noyau possibles et
la vérification de certains résultats métathéoriques
importants relatifs & la théorie des types de Lean.

170

BIBLIOGRAPHY

Title: Translating Proofs from Lean to Dedukti

Keywords: lambda-pi calculus modulo rewriting, proof system interoperability, type theory

Abstract:

Proof assistants are software tools that en-
able the precise expression of mathematical ob-
jects, properties, and proofs, and include automa-
tion that checks the validity of proofs with respect
to specific theorem statements. Proof assistants
often feature a high degree of expressivity, allowing
users formally state and verify many interesting re-
sults, spanning from foundational to research-level
mathematics.

Over the past few decades, a number of
proof assistants have been developed, each with
their own communities and formal mathematical
libraries. Unfortunately, however, it is often dif-
ficult to share results between different proof as-
sistants, as they usually differ significantly in their
syntax and underlying theories. This can lead to
the duplication of work, with the same mathemat-
ical theories being independently formalized in dif-
ferent systems. ldeally, we would like to have tools
that translate proofs between different systems, al-
lowing for the automated export of mathematical
proofs in such a way that they can be indepen-
dently verified by other systems.

This thesis describes the topic of translating
proofs from the Lean proof assistant to the logi-
cal framework known as Dedukti. Lean is a proof
assistant developed by the Lean FRO that has
become quite popular with mathematicians in re-
cent years, with its "mathlib" library containing a
large and growing body of formalized mathemat-
ics. Lean’s type theory is based on the Calculus of
Constructions with inductive types, taking closely
after the proof assistant Rocq. Dedukti is a logi-
cal framework designed to facilitate the export of
proofs between different systems, with a type the-
ory based on the lambda-pi calculus with rewrite
rules.

The basis of our translation is derived from a
generic encoding of so-called "pure type systems"
into Dedukti, with Lean being interpretable as a
particular kind of pure type system. Starting from
this base encoding, we define a translation from

Lean terms to Dedukti terms, also taking into ac-
count some additional features of Lean’s typing,
notably around Lean’s use of certain “definitional
equalities” to augment its expressive power by ex-
panding the class of types that the kernel is able
to consider equivalent. Handling these definitional
equalities usually consists in adding corresponding
rewrite rules to our encoding, enabling the Dedukti
kernel to identify the translation of terms that were
originally identified by the Lean kernel. We also
add components to our encoding enabling it to ef-
fectively decide equivalence between universe level
expressions in light of Lean’s support for prenex
universe level polymorphism and its impredicative
propositional universe.

The direct translation we define from Lean to
Dedukti, however, only accounts for a particular
subset of Lean’s definitional equalities. Some spe-
cific definitional equalities in Lean, namely those of
proof irrelevance, unit-n, and “K-like reduction”,
unfortunately do not give way to a straightfor-
ward encoding via Dedukti rewrite rules. To han-
dle these, we incorporate a “pre-translation step”
into our pipeline, initially translating Lean terms
to a smaller theory “Lean™" that does not feature
these problematic identities. Our approach takes
inspiration from a generic translation from exten-
sional to intensional type theory, which we adapt
for the purpose of translating from Lean to Lean™
by modifying a Lean kernel to effect translation in
parallel to normal typechecking.

The translation we have implemented has
yielded some promising preliminary results, though
certain challenges remain, particularly around scal-
ing the translation to work with larger libraries.
The translation techniques we describe in this the-
sis also suggest some interesting future directions
for this work, with possible implications for future
developments in Lean around possible kernel ex-
tensions as well as the verification of certain im-
portant meta-theoretical results relating to Lean's
type theory.

Maison du doctorat de Université Paris-Saclay

2° étage, aile ouest, Ecole normale supérieure Paris-Saclay
4 avenue des Sciencs

91190 Gif-sur-Yvette, France

	Introduction
	Formal Methods and Proof Translation
	Lean's Type Theory
	Type Inference Rules
	Definitional Equality Rules
	The Reduction Relation

	Dedukti's Type Theory
	Type Inference Rules
	Definitional Equality Rules

	Translation Framework
	Theoretical Motivations
	Completeness
	Soundness
	Encoding Properties

	A Pure Type System Encoding
	Pure Type Systems
	Lean as a Pure Type System
	Encoding Pure Type Systems in /R
	A Pure Type System Encoding for Lean

	The Syntax-Level Translation

	Universe Encoding
	Encoding a Predicative Universe Hierarchy
	Deriving a Normal Form

	Encoding an Impredicative Universe Hierarchy
	Deriving a New Normal Form
	Uniqueness of the Normal Form

	Implementation as a Rewrite System
	Base Encoding
	Deriving a Normalizing Rewrite System
	A Hybrid Encoding

	Encoding Lean's Definitional Equalities
	Deriving Definitional Equality Encodings
	Congruence Identities
	Proof Irrelevance
	 Rules

	Deriving Reduction Rule Encodings

	Designing a Preliminary Translation
	Theoretical Background
	Comparing Theories
	An Intuitive Translation Sketch
	A More General Translation Framework

	Lean4Less: Implementation Details
	Implementation Framework
	Adapting a Lean Kernel

	Implementation Details
	Optimizations

	Results, Prospects and Conclusion
	Translation Results and Limitations
	Lean4Less Translation: Results
	Lean2dk: Preliminary Translation Results and Limitations
	Lean4Less Translation: Caveats and Limitations

	Translation Prospects
	Addressing Lean4Less Scaling Difficulties with Auxiliary Constants
	Implications of a Verified Translation for Lean's Metatheory
	Extensionality in Lean

